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ABSTRACT
Physiological synchrony is a particular phenomenon of physio-
logical responses during a face-face conversation. However, while
many previous studies proposed various physiological synchrony
measures between interlocutors in dyadic conversations, very few
works on computing physiological synchrony in small groups (three
or more people). Besides, belongingness and satisfaction are two
critical factors for humans to decide where group they want to
stay. Therefore, we want to investigate and reveal the relationship
between physiological synchrony and belongingness/satisfaction
under group conversation in this preliminary work. We feed the
physiology of group members into a designed learnable graph struc-
ture with the group-level physiological synchrony and heart-related
features computed from Photoplethysmography (PPG) signals. We
then devise a Group-modulated Attentive Bi-directional Long Short-
Term Memory (GGA-BLSTM) model to recognize groups’ three lev-
els of belongingness and satisfaction (low, middle, and high). Finally,
we evaluate the proposed method on our recently collected multi-
modal group interaction corpus (never published before), NTUBA.
The results show that (1) the models trained jointly with the group-
level physiological synchrony and the conventional heart-related
features consistently outperforms the model only trained with the
conventional features, and (2) the proposed model with a Graph-
structure Group-modulated Attention mechanism (GGA), GGA-
BLSTM, performs better than the robust baseline model, the atten-
tive BLSTM. Finally, the GGA-BLSTM achieves a good unweighted
average recall (UAR) of 73.3% and 82.1% on group satisfaction and
belongingness classification tasks, respectively. In further analyses,
we reveal the relationships between physiological synchrony and
group satisfaction/belongingness.

CCS CONCEPTS
• Human-centered computing → Activity centered design; •
Applied computing→ Psychology; • Information systems→
Multimedia information systems.
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1 INTRODUCTION
Human beings by nature are social animals, who grow and mature
by engaging in a series of dyadic, small group, and other group
interactions in their lifetime [46]. Small group interaction and co-
operation frequently occur in our daily life, especially prevalent in
workplace settings. Most of the previous computational studies on a
small group or multi-party interaction primarily focus on modeling
task-based attributes using behavior dynamics within small groups,
such as automating the prediction of group performance or group
competence [5, 15, 22]. Fewer computational studies investigate the
social-affective aspects (group membership), such as belongingness,
satisfaction, emotion, trust, and cohesion. In this work, our goal
is to present a computational work on group belongingness and
satisfaction prediction.

A psychological construct contains many human behaviors, such
as self-esteem, a sense of group belonging, group culture, to name a
few. The group belongingness describes that the tendency belongs
to a team/group would affect an adolescent’s behavior well before
he or she is a member of the group [28, 46, 56]. If human perceives
a shared sense of belonging, it may lead to negative emotions, and
the changes involved in the neural basis [16]. In terms of group
satisfaction, Fu et al. [19] have investigated the differences and
relationships between group consensus and group satisfaction. Ad-
ditionally, the findings in [31] suggest that group members who
have a relatively high sense of group satisfaction wished to remain
within the group, and a sense of group satisfaction is also related
to the quality of the teamwork and the mean level of group mem-
bers’ satisfaction [38]. Spehar et al. [55] also have revealed that
belongingness has a positive impact on satisfaction at work. These
social-affective aspects of a group are critically crucial in small
group dynamics and affect the outcome of the task performance.

To understand these important aspects of group memberships,
most prior studies in behavior science utilize a questionnaire with
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a series of questions for quantification [23]. However, this self-
reported method is inefficient (non-scalable) and prone to unde-
sired variability (subjectivity and uncontrollable individual factors).
Hence, an objective method in modeling social-affective group-level
construct is important in continuously advancing our understand-
ing of group dynamics and providing technological solutions. Ac-
cording to social psychologists’ studies, people in groups tend to
become similar to other group members as they engage in positive
and satisfactory interactions. More generally speaking, it has been
shown that humans would gradually act synchronously with their
interlocutors during face-face interactions [59]. This particular phe-
nomenon, called synchrony, can be observed externally in voice [36],
facial expression [61], and even internally in physiology [47]. This
synchronous acting, synchrony, is directly controlled and evoked by
mutual changes in autonomic nervous system activity [18, 26, 48].
According to these prior studies, we hypothesize that group mem-
bers’ physiological synchrony is connected to the overall group
belongingness and satisfaction.

Physiological synchrony (PS) indicates a similarity of physi-
ological signals between individuals over time. Many previous
studies demonstrated the existence of synchrony in dyadic interac-
tions, likematernal-infant (mother-child/mother-adolescent/parent-
child), where these intimate social contacts would create an im-
pact on the infant’s (child’s) physiological systems [40, 47, 67]. Hu-
mans do affect the physiological processes of their attached partner
through the coordination of acoustic, linguistic, and visual social
signals [17, 25, 44]. While there is a large body of prior research,
most of these studies are conducted in dyadic interactions and not
in the context of small groups (three or more people). Only recently,
several researchers have started to investigate the relationships
between group performance/creativity/cohesion and PS [15, 22, 26].
For example, Mønster et al. [45] showed that physiological synchro-
nous in Electromyography (EMG) (activation of the smile muscle)
was related to group cohesion, and PS in electrodermal activity
(EDA) was associated with group tension. Also, PS in the heart rate
was correlated to group coordination [21]. Besides, interestingly,
both studies [21, 45] consistently found no relationships between
perceived group competence/performance and PS. While shedding
light on the similarity of physiological signals among individuals,
the studies mentioned above mostly ignored the within-session
temporal dynamics of physiology and regarded the contributions
of group members to the overall group-level construct as equal. In
this paper, we compute physiological synchrony over time during
small group interaction and devise a graph-attentive mechanism to
automatically learn the contributions from individual group mem-
bers to perform automatic recognition of group belongingness and
satisfaction. The proposed method is termed as a Graph-structure
Group-modulated Attentive Bi-directional Long Short-Term Mem-
ory (GGA-BLSTM) network.

Inspired by [43], they compute physiological synchrony in the
first derivatives of electrodermal activity (EDA). While the Photo-
plethysmography (PPG) signals are different from EDA, we hypoth-
esize that the first derivatives of signals are helpful to capture the
linearity between two physiological signals. We can imagine that
there is a complete PPG wave. We focus on the section from the on-
set to the wave pick and the section from the wave pick to the off-set.
Therefore, we use the linear correlation coefficient to calculate the

synchrony between two physiological signals. Hence, we compute
the physiological synchrony of all members within each group and
transform them into group-level physiological synchrony features.
Then, we combine them with conventional heart-related features
as input to train our network for recognizing group belonging-
ness/satisfaction. The proposed method transforms the individual
member’s physiological representations into the dynamic graph-
level concatenation, instead of direct concatenation, and model
their temporal dynamics in an attentive BLSTM network. We eval-
uate our method on two different attributes prediction, i.e., group
satisfaction and group belongingness, in our recently collected
multi-modal small group interaction database, NTUBA. To com-
pare with the performance of the conventional physiological feature
set, we conduct an ablation study on the physiological synchrony
computed with PPG and conventional PPG features. The method
achieves an excellent unweighted average recall (UAR) of 73.2% and
82.1% on the three levels (low, middle, high) group satisfaction and
group belongingness recognition. Moreover, we obtain 4.4% and
16.8% improvements comparing the performance with the conven-
tional PPG features on group satisfaction and group belongingness
classifications tasks separately. To sum up, the main contributions
of our paper are as below.

• We are one of the first works to propose a group-level physiologi-
cal synchrony feature computed with the first derivatives of PPG
signals during small group conversations.

• The proposed GGA-BLSTM model can automatically learn the
contributions of individuals in group-level physiological syn-
chrony features with a sophisticated attention mechanism to
enhance the power of models on group belongingness and group
satisfaction predictions.

• We are one of the first computational works in revealing the
relationships between the group belongingness/satisfaction and
physiological synchrony and introduce a new large collective
small-group database.

2 RELATEDWORK
2.1 Physiological Synchrony
Physiological synchrony (PS) exists between interlocutors’ mutual
changes in autonomic nervous system activity. There are variants
in measuring PS, as shown below.
• Pearson correlation coefficient (PCC). Researchers usually
utilized the Pearson correlation coefficient (PCC) to calculate PS
in the physiological signals. For instance, the previous studies
[26, 34, 43] used PCC to measure PS of EDA signals. Feldmana et
al. [18] use PCC to calculate PS in the electrocardiogram (ECG)
between mothers and their 3-month old infants during face-face
interactions. Chang-Arana et al. [8] estimated PS in EMG of the
reactions of the zygomatic major with PCC to understand and
analyze the designer’s success between users and designers.

• Spearman rank correlation coefficient (SRCC). Kaplan et
al. [27] have used SRCC to calculate PS in galvanic skin reflex
(GSR) to investigate the relationships between PS and affective
orientation. Cassani et al. [7] have explored the synchrony of
electroencephalography (EEG) spectral features between lead
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Table 1: A table summarizes the existing small group databases. “*” represents the dataset is self-collected. Zh, En, and Fr
represent Mandarin Chinese, English, and French, respectively.

Database Language Groups Population
Composition

Recordings Questionnaire
(Group Membership) AvailablePhysiology Audio Video Text

NTUBA Zh 72 3 ✓ ✓ ✓ ✓ ✓ ✓
UZH* [52] En 62 4∼6 - - ✓ - ✓ -
ELEA [53] En/Fr 40 4 - ✓ ✓ - - ✓
GAP [5] En 13 3∼5 - ✓ ✓ - - ✓
UGI [3] En 22 3∼5 - ✓ ✓ - - ✓
NU* [10] En 58 2 ✓ - ✓ - ✓ -
AMI [6] En 30 4 - ✓ ✓ ✓ - ✓

dancers and fellow dancers, and Kinreich et al. [30] have com-
puted PS in the EEG with SRCC over the time signal of the
Stockwell transform frequency spectrum in two partners.

• Other Measurements. Other studies proposed autocorrelation
[14] and cross-correlation function [4, 22] to calculate PS for
behavior analyses during interactions. Also, Chikersal et al. [9]
calculated distances between the series of EDA signals of each
individual in a dyad using Dynamic Time Warping (DTW) to
compute PS for revealing relationships between PS and dyadic
satisfaction. Moreover, there are other PS assessments, such as
Single Session Index, Signal Matching, Instantaneous Derivative
Matching, Directional Agreement, and Fisher’s z-transform [37,
51].
Unlike the studies mentioned above, we propose a new PS mea-

surement by estimating the contemporary trends and changes with
the first derivatives of PPG signals and then using both PCC and
SRCC to obtain the final PS values.

2.2 Group Satisfaction and Belongingness
Recognition

To the best of our knowledge, there are very few computational
studies on automatic recognition group satisfaction or belonging-
ness. Only Lai et al. [32] had trained classifiers to automatically
recognize group satisfaction in meetings using external behaviors,
i.e., acoustic, lexical, and turn-taking features. Moreover, Mønster
et al. [45] revealed that PS is an indicator of interpersonal rapport
and relationship quality in a group. Also, Chikersal et al. [9] pro-
posed that physiological activation is unconscious and difficult to
control with consciousness. In this work, our focus is to predict
group belongingness and satisfaction with physiological signals.

2.3 Group-level Graph LSTM
There are various Graph Long Short-Term Memory (Graph LSTM),
and researchers modified the structure of inputs to fit their specific
graph-like data. For instance, Liang et al. [35] have proposed a
Graph LSTM model to capture different degrees of semantic corre-
lation with neighboring nodes on the semantic object parsing task.
Peng et al. [50] have designed a particular representation incorpo-
rating various intra-sentential and inter-sentential dependencies for
a cross-sentence n-ary relation extraction with Graph LSTM model.
Zhang et al. [64] have changed the uni-directional LSTM layer of
Graph LSTM into bi-directional and add an attention mechanism

in their proposed S-LSTM for improving text encoding. Moreover,
Tang et al. [57] have proposed the Coherence Constrained Graph
LSTM (CCG-LSTM) to effectively recognize group activity by mod-
eling the appropriate motions of individuals while suppressing the
irrelevant motions. Shu et al. [54] have introduced a residual LSTM
into their model, Graph LSTM-in-LSTM (GLIL), for group activity
recognition by modeling the person level actions and the group
level activity simultaneously. Zhang et al. [63] have used the graph
LSTM model to addresses the limitations of sequential models by
converting textual information into a graph and then deploying
the message passing operation to ascertain the node representation
and the semantic correlation between slot and intent on spoken
language understanding task.

However, the studies mentioned above only transform inputs
from the individual level into group-level statically, but they did
not consider the potential unequal contribution from each individ-
ual in deriving group-level inputs. In this work, to learn a more
accurate contribution from each input for a group-level input, we
slightly modified the gating mechanism in LSTM by adding learn-
able weights to decide the contributions of group-level input fea-
tures.

3 METHODOLOGY
3.1 Datasets
3.1.1 Small Group Interaction Databases. There have been
several existing small group interaction databases (shown in Table
1). For instance, the ELEA corpus [53] was constructed to analyze
developing leadership in freshly arranged groups. The GAP cor-
pus [5] contains thirteen small team conversations in which the
subjects achieve the Winter Survival Task for studying perceptions
on cohesion, leadership, to name a few. The UGI corpus [3] was
collected for fine-grained analysis of the head and body pose and
gestures. The AMI corpus [6] was designed to collect for studying
performing behavior in small and face-to-face conversations in
the IDIAP smart room, and it involves multi-modal sensor data
with manually labeled meeting conversations. The database used in
[10] gathered from laboratory research where sixty dyads carried
through the Test of Collective Intelligence together online and eval-
uated their group satisfaction while wearing physiological sensors.
Also, the database [52] collected the research with student teams
in a co-working virtual surrounding.
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Figure 1: The procedures of collecting NTUBA database.

However, most databases mentioned above only consist of audio
and visual recordings and lack physiology for the group member-
ship recognition. In this study, our objective is to use physiology
to investigate the group members during the group interaction.
Although UZH and NU are suitable for our work, the databases
are not released. Therefore, we organized the NTUBA database
collected by the College of Management of National Taiwan Uni-
versity (NTU). As Table 1 shows, the NTUBA database contains the
most participants and groups and also involves the self-reported
questionnaire, including the social-affect aspects of the group. Ad-
ditionally, the NTUBA database is the largest small-group database
in Mandarin Chinese. We will provide the details of the NTUBA
database is described in the following section.

3.1.2 NTUBA Database. The NTUBA is to explores the relation-
ship between group behaviors and group performances. Each group
was assigned a shopping task by following [60] of diverse scenarios
where they were prompted to discuss with each other and con-
cluded the best solution in a limited 30 minutes. All participants
have signed informed consent and been fully informed of all ex-
perimental procedures under the approved ethical guidelines (IRB
approved). There were 72 three-person groups, who mainly were
undergraduate students at NTU, and 7 of the groups were dropped
due to signal loss. Hence, this work included 195 participants in 65
groups total. To be noticed, the NTUBA is still collecting, and it is
not published before.

The collecting processes have six sessions in total shown in Fig-
ure 1. Researchers firstly inquired about prior familiarity between
group members and instructed subjects to fill out the self-reported
questionnaires. Then, the first task began for 30 minutes. Afterward,
the participants completed a midpoint survey about the perceived
group cohesion and performance. Furthermore, they were asked
to reflect on the task they had just completed and discuss how
to perform better at the second task for 10 minutes, and then the
second task started for another 30 minutes. Finally, an endpoint
survey was reported in self-reports. In this work, we follow [9] to
use the data of the first task; compared to the second task, and it
would include less confounding factors such as task reflection and
increased familiarity between members.

The NTUBA contains audio, transcripts, video, and physiology
recordings, which are all simultaneously recorded. In this study, we
only used one type of physiological signal, Photoplethysmography
(PPG), recorded by the wrist-worn E4 sensor with a 64Hz sample
rate, which is widely used in previous studies on physiological
synchrony [9, 43]. For the measurement of PPG signals, Fujita et al.

Table 2: A table summarizes the statistics on the NTUBA
dataset, including the label distribution and the average and
sum timestamps of PPG and ∆PS . PPG and ∆PS represent the
PPG features and physiological synchrony features, respec-
tively.

3-class Statistics Group
Satisfaction

Group
Belongingness

Low
Number of Groups 22 33
Timestamp

(Average/Sum)
PPG 3.318/73 3.848/127
∆PS 4.727/104 4.697/155

Middle
Number of Groups 29 24
Timestamp

(Average/Sum)
PPG 3.448/100 3.167/76
∆PS 3.897/113 4.000/96

High
Number of Groups 14 8
Timestamp

(Average/Sum)
PPG 4.571/64 4.250/34
∆PS 5.429/76 5.250/42

[20] measures the sampling rate from 10Hz to 240Hz, and Choi et al.
[11] measures from 5 Hz to 10000 Hz. They claimed that 60Hz and
50Hz are the minimum tolerance ranges, respectively, which do
not affect the information of PPG signals. Hence, we can point out
that our work’s 64 Hz PPG signals are sufficient to collect practical
information. Besides, the subjects were asked to annotate their
subjective perceptions, including group memberships, on a seven-
point scale at the end of each task (1 = “highly inaccurate” and seven
= “highly accurate”). We list two questions about the degree of the
group’s satisfaction and belongingness used as learning targets in
this work below.
• This question aims to understand your satisfaction with this
group. Please indicate your level of agreement with the following
narratives: Overall, I am very satisfied with this group? (此部分
旨在瞭解您對這個團隊的滿意度，請針對下列敘述句指出您的同意

程度:整體來說，我對這個團隊非常滿意)
• This question aims to understand the relationship between you and the

group members. Please indicate your level of agreement for the following
narratives: Group members can feel a strong sense of belonging to each
other? (此部分旨在瞭解您與團隊成員間的關係，請針對下列敘述回
答您的同意程度：團隊成員間彼此可以感受到強烈的歸屬感)

We aggregated the scores of all group members to represent a single
group-level score, and the distribution of score is shown in Figure 3.
We split group-level values into three-class according to the original
score distribution of each member. By explicitly setting 1-point to
4-point as low, 5-point as middle, and 6-point and 7-point as high,
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Figure 2: The overview of the proposed Graph-structure Group-modulated Attentive Bi-directional Long Short-TermMemory
(GGA-BLSTM) on group satisfaction/belongingness recognition tasks throughPPG features (PPG) and physiological synchrony
features (∆PS) computed with PPG among group members.

the group-level score can be converted into the following: groups
with scores lower than [4,4,5] are divided as low, and groups with
scores higher than [5,6,6] are divided to high. Hence, after a simple
aggregation, we can obtain the original group-level scores. Then
divide the group-level scores into three-class. To make the data
distribution of each class balanced, we set the score thresholds
that the scores ranging from 3 to 13 are low class, from 14 to 16 is
middle class, and from 17 to 21 is high class. We also summarize
some statistics in Table 2 including the number of data samples in
low, middle, and high categories distribution, the average and sum
timestamp of each level.

3.2 Computational Framework
3.2.1 Physiological Descriptor Extraction. We firstly prepro-
cess individual physiological data with a low-pass filter cut-off
at 60Hz on Photoplethysmography (PPG) signals to avoid power
frequency noise, then use the consistent FIR filtering from [58] to
clean up signals. Also, the first and last 10s of PPG recordings were
omitted to avoid artifacts, and then we utilize NeuroKit [13] and
HeartPy [58] to extract the standard low-level physiological descrip-
tors (LLDs) widely used in the scientific literature given discrete

Figure 3: A bar plot summarizes the distribution of the orig-
inal group-level score, which is aggregated by the scores of
all group members of each group. The original group-level
score is a list at the bottom. We plot group satisfaction (red)
and belongingness (black) in the exact figure and show the
total number of each score in our dataset on top of the bars.

Table 3: A table shortens the overview of low-level physio-
logical descriptors extracted from NeuroKit and HeartPy.

Modality Low-Level Descriptors

PPG(35)

RMSSD, meanNN, sdNN, cvNN, CVSD, medianNN, CD,
madNN, mcvNN, pNN50, pNN20, DFA_1, ULF, VLF,
LF, HF, VHF, LFn, HFn, LF/HF, LF/P, HF/P, Triang,
Sample_Entropy, Entropy_Spectral_HF, Entropy_SVD,
Total_Power, FD_Petrosian, FD_Higushi, Shannon_h,
Shannon, Fisher_Info, Entropy_Multiscale_AUC,
Entropy_Spectral_LF, Entropy_Spectral_VLF

heart rate signals. There are 35-dimensional features, including
time-domain and frequency-domain measures, listed in Table 3.
Furthermore, a standard z-normalization is used participant-wise
on each feature dimension to ease the effect of individual differ-
ences, defined as PPG.

3.2.2 Group-based Physiological Synchrony. While several
different methods have been utilized for assessing physiological
synchrony (PS), the simplest and most used technique to assess
synchrony is the Pearson correlation coefficient (PCC) [1]. Another
simple approach is the Spearman rank correlation coefficient (SRCC)
[62]. However, the correlation analysis of continuous human data
is vulnerable to spurious conclusions. For instance, when using the
Pearson correlation, the data is expected to be independent and
stationary; the data has a constant mean and variance over time.
Additionally, the Pearson coefficient and Spearman coefficient are
both approximately zero when two variables are nonlinear relation-
ships. Therefore, we follow [43] to slightly modify the conventional
measurement and calculate the first-order derivatives of PPG sig-
nals to capture the synchrony trends. Vasundhara et al. [43] also
computed the slope value of the EDA signals before calculating
PS with PCC. Although the EDA and PPG are different signals, we
indeed discover the synchrony trends on the first-order derivatives
of PPG signals. On the other hand, PCC is better suited for linear
relationships in data, whereas SRCC is more accurate for nonlinear
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correlation and less affected by outliers. Hence, we use both of them
to calculate PS in the PPG of individuals in this paper.

Further, since there exist individual differences in the timing
of physiological responses, we follow [9] to apply dynamic time
warping (DTW) [2] before our synchrony measure. To be noticed,
we denote x to be the first-order derivative signal of every group
member, which is the reference of every group. Then y is the com-
pared signal, and i is the number of the group member. Afterwards,
with the DTW, we allow amaximumwarping of 4 seconds, and then
calculate synchrony over the entire 30 minutes using the Pearson
correlation coefficient (rp ) [1] as Eq.(1) and Spearman rank correla-
tion coefficient (rs ) [62] as Eq.(2) between the first-order derivative
signals of each dyad in this three-person group interaction with 180
seconds (s) as a window size. This parameter is chosen empirically
ranging in [60s, 120s, 180s, 240s, 300s, 360s]. The performance using
180s window size is the best among them. Additionally, the use
of 50% overlapping size is considered when applying windowing
as another type of representation. This operation gives us a time-
to-time correlation score revealing the level of synchrony within
dyads for the last 180 seconds.

rp =
n
∑
xiyi −

∑
xi

∑
yi√

n
∑
x2
i − (

∑
xi )2

√
n
∑
y2
i − (

∑
yi )2
, (1)

rs = 1 − 6
∑
(xi − yi )

2

n(n2 − 1)
, (2)

where x̄ represents the mean of the vector xi , and ȳ is the mean of
the vector yi . n represents the number of samples.

Our method returns the max correlation values S when compar-
ing each group member’s reference signal to other members in the
session. Notice that we only record the values if the p-value is less
than or equal to 0.05, else S will be assigned 0 in terms of Pearson
and Spearman correlation coefficient defined in Eq.(3) for avoiding
capturing noises. {

S = r , p≤0.05
S = 0, else

. (3)

Since there are three members in a group, we retain all correlation
values computed between pairwise combinations, denoted as ∆PS ,
as a physiological synchrony measure. It includes 4-dimensional
features per window.

3.2.3 Graph-Structure Group-modulated Attention (GGA)
Mechanism. To better model the dynamics and importance of
each group member, we introduce a description of the latent effect
of the physiological synchrony arising from each group member
within groups shown in Figure 2 (Graph Structures) because group
members directly induce the physiological synchrony. To learn
more accurate contributions from each input among group-level
inputs, we propose a mechanism by adding the learnable weights
to decide the contributions of group-level input features. To be
more specific, to integrate the information of each other members,
at time-stamp tn (n is ranging from 1 to the maximum length of
time-stamp), we construct an undirected graph G = {V,H} to bind
the 3 members of the groups, and V represents the set of all graph
nodes whose number v is 3 and H means the node features whose
feature dimension is k , and α ∈ Rk×v represents a learnable contri-
bution weight vector associated with the set of 3 members nodes.

The input feature vector (Z ) shown in Figure 2 (Graph-Structure
Group-modulated Attentive BLSTM) for any group i is abstracted
as follow:

Z i
tn =

∑v

s=1 αsHs , (4)
where Z is a graph-structure group-based representation as input
of following BLSTM Block.

3.2.4 BLSTM Block. The main structure of the BLSTM block is
modified from [41] consisting of one BLSTM layer with a weighted
time-pooling attention mechanism, one fully-connected layer with
Rectified Linear Unit (ReLU) activation function, and then one
prediction layer with a softmax activation function. Now, given
the output Z , the BLSTM layer then generates an output sequence
y = (y1, ..., yt ). T equals the length timestamp of input features,
and t is at each timestamp. The weighted time-pooling attention
mechanism is as below. A softmax function is utilized to the results
to get a set of final weights for the frames which sum to unity:

αt =
exp(uTyt )∑T
t=1 exp(u

Tyt )
, (5)

where u is the attention parameter vector.
The above attention weights are used in a weighted average in

sequence to get the output representation:

ZBLSTM =
∑T

t=1 αtyt . (6)

Finally, the ZBLSTM is passed into the following layers, one
fully-connected layer with Rectified Linear Unit (ReLU) activation
function and one prediction layer with a softmax activation function
for prediction.

4 EXPERIMENT
4.1 Experimental Setup
There are two types of group memberships to evaluate our
method: group satisfaction and group belongingness. A group-
independent and class-balanced 5-fold cross-validation are used
as our evaluation scheme. The BLSTM-based models (Attentive
BLSTM and GGA-BLSTM) are trained with a fixed length, and we
use the zero-padding to ensure each data sample’s time-steps are
the same length is less than the maximum timestamp.

Several hyper-parameters as below are grid-searched: learning
rate among [0.05, 0.03, 0.01] with adjusting mechanism by multi-
plying 1√

1+epoch
per epoch. The number of nodes in the BLSTM

layer is fixed as [2, 4, 8]. Batch size is fixed as [16, 32], the max
epoch is 1000, and optimizer is ADAMAX [29]. Additionally, we
follow [65, 66], which are the closest studies to us, to use an un-
weighted average recall (UAR) as our final evaluation metric. Zhong
et al. [65, 66] modeled the group-level personality composition for
group performance classification. Finally, the whole framework is
implemented using the Pytorch toolkit [49].

4.2 Model Comparison
We carry out our experiments utilizing SVM and vanilla DNN
only with the physiological features or with physiological syn-
chrony features as baseline results for an intact comparison. First,
several parameters of SVM are grid-searched: kernel type used
[′rb f ′, ′linear ′, ′poly′]. The ′coe f 0′ is fixed as [1, 10, 100], and the
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Table 4: A table summarizes the experimental recognition results in UAR. “*” represents the highest UAR in the task. “x” and
“o” indicate the DTW window with overlapping sizes set to 0% and 50%.

Target Group Satisfaction Group Belongingness
Feature Type PPG ∆PS PPG+∆PS PPG ∆PS PPG+∆PS
Overlap (50%) x o x o x o x o x o x o
SVM 0.402 0.358 0.359 0.355 0.431 0.397 0.399 0.416 0.374 0.382 0.420 0.468
DNN 0.523 0.506 0.532 0.485 0.594 0.543 0.518 0.569 0.530 0.566 0.569 0.611
Attentive BLSTM 0.672 0.548 0.515 0.467 0.704 0.668 0.599 0.692 0.481 0.505 0.794 0.810
GGA-BLSTM 0.688 0.591 0.611 0.579 0.732* 0.682 0.614 0.653 0.598 0.681 0.807 0.821*

′дamma′ of ′rb f ′ kernel is fixed as [1e − 3, 1e − 4]. Second, the
architecture of the DNN model includes three dense layers with
dimensions [256, 128, 32], and the dropout rates are 0.3, 0.1, and
0.1 in DNN, respectively. For both of these models, we compute 15
statistical functionals1 on each of the extracted individual short-
term PPG features and ∆PS features. Afterward, we use 5 statistical
functionals2 to obtain group-wise descriptors. Then we research
with both physiological features and physiological synchrony fea-
tures, and we compare them with the following models to inspect
the power of the proposed GGA-BLSTM.
• Attentive BLSTM. The baseline Attentive Bi-directional Long
Short-Term Memory (Attentive BLSTM) model [41] contains one
dense layer in a network with a ReLU activation function, one
BLSTM layer with a weighted time-pooling attention mechanism
proposed by [42], one more dense layer with ReLU activation
function, and then one prediction layer with a softmax activation
function. Specifically, we concatenate the PPG of three members
of each group as the model input.

• GGA-BLSTM. The proposed Graph-structure Group-modulated
Attentive Bi-directional Long Short-TermMemory (GGA-BLSTM)
model is an additional modification from Attentive BLSTM by
removing the first dense layer and adding a graph-structure
group-modulated attention mechanism to transform the input
features into graph-level representations with individual learn-
able weights. Our objective is to learn better the contributions of
each member in each timestamp using group structural informa-
tion. There are 65 graphs that all the group members would be
linked in every timestamp. The specifics of graph structures for
group constraints and Graph LSTM have been described in 3.2.3
and 3.2.4.

4.3 Group Satisfaction and Belongingness
Recognition Results

Table 4 summarizes the complete recognition results across differ-
ent methods. The proposed GGA-BLSTM model with an attention
mechanism outperforms all comparison methods when using both
PPG and ∆PS as inputs, which obtains the best UAR 73.2% and
82.1% on group satisfaction and group belongingness classification,
respectively. The improvements are the absolute 2.8% and 1.1%

1max/min value and respective relative position within input, mean/median value,
standard deviation, first percentile, ninety-ninth percentile, the difference between
ninety-ninth percentile and first percentile, skewness, kurtosis, quartile 1, quartile 3,
and interquartile range
2max/min value, mean/median, standard deviation, and differences

on group satisfaction and group belongingness recognition tasks
compared to the attentive BLSTM model.

Moreover, there are several observations. First, while the models
trained directly with PPG features can achieve a relatively high
UAR, the models trained with only 4-dimensional ∆PS features can
obtain a competitive performance. Second, there exists a large time-
series requirement in our tasks. According to the ablation study,
the model without the ability to model the temporal relationships
perform poorly than the models which can accommodate the tem-
poral information, especially for PPG features. Hence, based on the
experiments, it is suitable to use a time-series model like BLSTM for
modeling PPG features. Furthermore, to figure out the effect of the
overlap sizes, we conduct the experiments on the same classifiers
with the same input features but in different overlap sizes, and the
results show that whether taking the overlap or not depends on
the learning targets. That is, we still need to investigate the best
parameters of overlap sizes according to various tasks.

Furthermore, the proposed GGA-BLSTM model trained with
graph structure inputs that link each group member’s physiological
representations obtains improved robustness results on the group
satisfaction and belongingness tasks. The significant difference be-
tween BLSTM and GGA-BLSTM is the construction of the features
of group members. GGA-BLSTM can learn better the dynamic infor-
mation contributions of some of the physiological features of each
member over time by learning from the representation weights of
members with graph strategy. Finally, we provide the additional
analyses shown in the following section.

5 ANALYSIS
In this section, to understand relationships between physiological
synchrony and group satisfaction/belongingness.We perform a one-
way ANOVA test to explore the differences in the physiological syn-
chrony between three levels of group belongingness/satisfaction,
respectively.

5.1 One-way ANOVA Significance Test on ∆PS
Having established the presence and characteristics of physiological
synchrony in the group belongingness and satisfaction recognition,
we are interested in exploring the differences in the physiological
synchrony between the three-level group belongingness and sat-
isfaction, respectively. We measure the physiological synchrony
representations for each group of every timestamp that represents
each level (low, middle, or high) class. While each data sample has
more than one timestamp, we consider all timestamps as the group
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Table 5: A table summarizes the one-way ANOVA test on
physiological synchrony features. “F (#,12)” expresses the
#th representation of all 12 ∆PS features.

Target Group Satisfaction Group Belongingness
F (#,12) F statistic P-value F statistic P-value
F (1,12) 4.128 0.017 3.385 0.035
F (3,12) 5.364 0.005 - -
F (4,12) 3.713 0.026 3.232 0.041
F (7,12) 5.178 0.006 - -

in respect to the levels of group belongingness/satisfaction. This
procedure results in a total of 293 and 237 pairs corresponding
to PPG and ∆PS , respectively. Table 2 shows the distribution of
timestamp-level pairs. Take ∆PS as an example. There are 155, 96,
and 42 pairs on the low-, middle-, and high-level group belonging-
ness. Using this data, we perform a one-way analysis of variance
(ANOVA) [24, 39] on each feature of ∆PS with labels of two tasks.

The reporting APA format follows ANOVA test format, and all
the results (F statistics and p-values) are shown in Table 5. With
group satisfaction target, the significance thresholds (p-value) of
four features in ∆PS are lower than 0.05, and three of them in-
cluding the F (3,12), F (4,12), and F (7,12) of ∆PS come from the
calculation with Spearman rank correlation coefficient (SRCC). The
other one, F (1,12), comes from the Pearson correlation coefficient
(PCC). On the other hand, there are 2 significant indicators (F (1,12)
and F (4,12)) on the three-level group belongingness. These find-
ings suggest that we should compute ∆PS with SRCC, which are
easier to find the physiological synchrony given two PPG signals
of different individuals than PCC.

In the conventional method, most computational studies on cal-
culating physiological synchrony from physiological signals utilize
PCC. However, we propose that SRCC can be an alternative mea-
sure to estimate physiological synchrony. Besides, we have similar
findings that group satisfaction is positively associated with high
levels of physiological synchrony as same as [9]. Furthermore, we
also do the same significance Test on the PPG features, but there
are no feature dimensions whose significance threshold (p-value)
is smaller than 0.05 on the group belongingness. Instead, there are
nine significant indicators among PPG features whose p-values
are smaller than 0.05 (CSVD, Entropy_SVD, HF, pNN20, madNN,
mcvNN, meanNN, medianNN, CD). Therefore, the synchrony rep-
resentation (∆PS) has high potentials for various applications on
recognizing other group memberships, such as group cohesion and
group emotion.

6 LIMITATION
The work is a preliminary study investigating the relationships be-
tween ∆PS and group belongingness/satisfaction. We also propose
a group-modulated attention mechanism to learn the contributions
of features of each member among groups. However, there are still
many factors we did not take into account, such as gender effects
in the group composition. Lee [33] has shown evidence that gender
composition of groups is related to group cohesion and perfor-
mance. In this work, we did not consider the gender composition
in groups. Additionally, we did not conduct comparative results

with physiological synchrony features computed with the Raw PPG.
Moreover, the proposed approach can not ensure that the motor
movement has influenced the physiological synchrony computed
with PPG signals recorded by E4-wristband because it has a chance
to be affected by movement. That is, recording physiological activ-
ity could be a product of motor coordination. We will take video
recordings into account to make sure the issues mentioned above
in future work. Subsequently, we only use the unweighted average
recall (UAR) as the evaluation metric, which cannot be taken as in-
dicative for a good approximation of the actual performance of the
proposed system. We will use other metrics (e.g., macro-F1 score)
to evaluate our proposed approach in future work.

7 CONCLUSION AND FUTUREWORK
Social-affective aspects of the group, e.g., group belongingness
and group satisfaction, significantly impact personal emotional
feelings. In this paper, the proposed method, GGA-BLSTM, auto-
matically predicts group satisfaction/belongingness classification
with physiological synchrony computed with the slop of PPG (∆PS)
and conventional heart-related features (PPG). We design a unique
attention mechanism, Graph-Structure Group-modulated Atten-
tion (GGA), to learn the contributions of group members. Further-
more, this framework is evaluated on a recently collected larger
small group collective database, NTUBA. To be noticed, NTUBA
is not published, and this is one of our contributions. Finally, this
approach, GGA-BLSTM, achieves a promising UAR of 73.3% and
82.1% on the three-level (low, middle, high) group satisfaction and
group belongingness recognition tasks, which get 4.4% and 19.3%
improvements comparing with the PPG features, respectively.

To the best of our knowledge, this is one of the first studies that
have explicitly modeled the physiological synchrony computed
with the first derivatives of PPG for predicting group belonging-
ness and satisfaction. Additionally, the ablation study shows that
the time-series modeling for physiological features is practical and
helpful to improve the performance of two tasks. Also, according to
our analyses, we found that Spearman rank correlation (SRCC) is an
alternative physiological synchrony measure in PPG, and this type
of physiological synchrony helps researchers to quickly capture the
contemporary trends of synchrony in group conversations than the
conventional method, Pearson correlation coefficient (PCC). In the
future work, we will investigate further the contributing factors to
the synchrony phenomenon, extend our multimodal fusion frame-
work to combine physiological synchrony computed with raw PPG
signals and other expressive behaviors (e.g., acoustic behaviors,
facial cues, body movements, or conversational temporal dynamics
[12]) to enhance the robustness and recognition power.
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