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ABSTRACT

Continuously identifying day-to-day mental stress can be re-
alized by accessing wearable devices to measure physiolog-
ical indicators. However, the nature of bodily signals raises
issues of privacy and data heterogeneity. Recent federated
learning scheme provides a promising direction to alleviate
the privacy concern, but the large inter-client differences can
lead to a sub-optimal model performance. In this work, we
propose a client-aware aggregation strategy to customize the
global model forked by each client to conduct mutual learning
in federated setting. Our proposed mixture Federated Mutual
Learning (mixFML) weighs the distances of local models to
generate a unique mixture of global model per client. We
evaluated our method on the public TILES-2018 and an in-
house Firefighters dataset for stress detection using HRV. Our
proposed mixFML achieved 8.0% and 1.8% MCC improve-
ment on two datasets compared to federated mutual learning.

Index Terms— federated learning, stress detection, heart
rate variability, mutual learning

1. INTRODUCTION

The pervasiveness of wearable devices and advancement of
biometric sensors technologies have enabled the next gener-
ation smart health systems. These technologies are key in
providing in-time and unobtrusive physiological state mon-
itoring. Stress is a critical risk factor for diverse diseases
and can lead to degraded working performances. Automatic
stress detection using bodily signals is an emerging frontier
(e.g., [1, 2]). However, transferring physio-data from each
user’s wearable sensor for centralized model training is be-
ing heavily scrutinized with the uprising awareness on user
privacy. Additional complexity emerges as variability from
devices and idiosyncratic nature of an individual adds to the
heterogeneity nature of these bodily signals [3]. For exam-
ple, while it is known that physio-indicators, such as electro-
dermal activity and heart rate variability (HRV), reflect stress
state, there exists a large inter-subject variability due to geo-
metrical and physiological factors [4]. Hence, given the pro-
liferation of wearable devices, privacy concerns and signal
heterogeneity are two major hurdles in realizing a real-world
stress detection model for in-the-wild setting.

Recently, research effort in publicly releasing TILES-
2018 [5] dataset uniquely provides a large scale, longitudinal,
and highly close-to-life data to help advance physio-signal
modeling and stress detection in real workplaces. Recent
studies on TILES-2018 have largely focused on sophisticated
physio-feature designs to improve detection accuracy [6, 7].
However, their centralized training approaches will likely
hinder the real-world applicability due to privacy concern.
The emergence of Federated learning (FL) provides a mod-
ified learning paradigm that operates by aggregating each
client’s local model to collectively learn a global model. This
prevents transferring of data and eliminates data privacy issue
when deploying in everyday life [8]. However, a known issue
of FL is its inability to handle heterogeneous clients.

Several studies have extended the initial FL approach us-
ing personalized strategies to deal with heterogeneous clients.
For example, given prior knowledge of client characteristics,
performing client selection can help FL to converge to a better
global model [9,10]. Another line of research handles hetero-
geneity by devising strategies to train client model locally.
Research in this direction is inspired by knowledge transfer
techniques, e.g., knowledge distillation [11] aiming to trans-
fer knowledge between teacher-student models in an ensem-
ble manner resembles the server-client FL setup. Specifi-
cally, Federated Mutual Learning (FML) [12] generates well-
trained local client models by mutually learning with a global
server model. While FML is emerged as a current SOTA for
local model training in FL setting, a single global model is
assumed to facilitate each local client training. We argue that
this is not optimal for handling the client heterogeneity espe-
cially for bodily signals collected in the real-world setting.

In this work, we propose a mixture FML (mixFML) to re-
lax the single global model constraint using a distance weight-
ing mechanism to generate customized mutual model for each
client. We evaluate our approach for the task of stress detec-
tion using HRV features on two datasets, the public TILES-
2018 and an in-house Firefighters dataset. We compare the
performance with other federated methods and obtain a 8%
and 1.8% MCC improvement on the two datasets respectively
compared to the SOTA FML method. The rest is organized as
follows: section 2 includes database description and our pro-
posed method; section 3 details our experimental setup and
results; finally, we conclude in section 4.
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Fig. 1: mixFML: 1) Server and clients initialize global and local models. 2) Each client forks global model from server as
mutual model and conduct DML using mutual and local model during local update. 3) Mutual and local model are uploaded to
server to calculate distance-based weights. 4) Server aggregates customized next-round global models for each client.

Table 1: An overview of HRV features extracted from [6,14].

Feature Group Features

Time(8)
meanNN, sdNN, coefficient of variation, mean of 1st diff.,
RMSDD, standard deviation of absolute of 1st diff.,
pNN50, normalized mean of absolute 1st diff.

Frequency(6) High frequency power(HF), Low frequency power(LF), HF/LF,
normalized HF, normalized LF, Very low frequency power(VLF)

Multi-scale(47)
For RR and dRR calculate: MSPE, MSmPE, PEdw, d(s1,:),
d(s2,:), 1st diff. of d(s1,:) and d(s2,:), sum of d(s1,:) and d(s2,:)
Additional: total asymmetry index

2. RESEARCH METHODOLOGY

2.1. Dataset

TILES-2018 database consists of in-the-wild physiological
measurements and survey responses from 212 real hospital
workers, which were collected longitudinally over ten weeks
while participants carried out their daily work/life as usual.
These participants were equipped with wearable devices to
track daily activities and physiological measurements; vari-
ous dimensions of their well-being over time were assessed
using self-reported surveys. In this work, we utilize the RR
time series from OMSignal smart-shirt as input and self-rated
stress survey (1-5) as labels. The dataset has 58.2% stress-
labeled data after binarization with its global mean (µ = 1.8),
following the same setup in [13]. Since the amount of avail-
able data varies among participants, we select 25 balanced
participants, each having around 40 samples for this study.

To expand on similar research in high-stress workplaces,
we replicate the TILES-2018 by collecting data from real fire-
fighters over ten weeks. Heart rate is measured using Fitbit’s
photoplethysmography, and stress responses are collected via
the same survey. Label binarization uses the TILES-2018
threshold of 1.8, resulting in 67.3% stress-labeled data. This
database comprises 23 participants, each contributing 30 to
40 samples.

Fig. 2: The process of HRV feature extraction from RR series.

2.2. Heart Rate Variability (HRV) Feature Extraction

OMSignal and Fitbit provide heart rate records every 1 and
5 seconds respectively. We then calculate the RR intervals to
form RR time series based on recorded heart rate. Heart Rate
Variability (HRV) features are known to correlate with stress
level in the literature [15]. An overview of the HRV feature
extraction process is shown in Fig. 2.

Similar to prior works on TILES-2018 [6, 14], we extract
14 conventional time/frequency domain HRV features (using
open toolbox1) and 47 advanced multi-scale HRV features
(listed in Table 1) from RR series in every 5-minute window.
These features are then aggregated at a day-level using 13 sta-
tistical functions, and Recursive Feature Elimination (RFE) is
applied to select top 100 features. Specifics about the extrac-
tion process can be found in previous research [14].

2.3. Federated Learning (FL) Strategy

2.3.1. Problem Formulation

Suppose we have K clients with index set K and a central
server in the federated system, each client k ∈ K keeps its
own dataset Dk := {Xk

n, y
k
n}

Nk
n=1 of Nk samples. Our objec-

tive is to find an optimal local model fk(θlock ) of parameters
θlock for each client to solve local tasks (stress detection) using
only local data (HRV features) and share information without
any data transfer (federated learning setting).

1https://aura-healthcare.github.io/hrv-analysis/
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2.3.2. Federated Mutual Learning (FML)

Our proposed FL strategy is primarily motivated by Federated
Mutual Learning (FML) [12], where global model and each
client’s local models transfer knowledge by introducing KL
divergence as an additional loss calculated on each other’s
logits output. That is, during round t in a FML training, each
client k forks global model from central server as its mutual
model: θmut,t

k ← θglob,t, and conduct deep mutual learning
(DML) with its local model using client-side private data. The
trained mutual models after r rounds of local epochs will be
uploaded to the server. Then, the next-round of new global
model will be formed by equal-weighted aggregation from the
each client’s mutual model: θglob,t+1 = 1

K

∑
k∈K θmut,t,r

k .
The loss function of DML can be formulated as the following:

Lloc = αLCloc
+ (1− α)DKL(pmut ∥ ploc)

Lmut = βLCmut + (1− β)DKL(ploc ∥ pmut)
(1)

where loc is the private local model, mut is the mutual model,
LC is the classification loss function (cross entropy loss in
this work) and DKL is the KL divergence between two pre-
diction logits ploc and pmut. α and β serve as the proportion
of knowledge transferred between the two models.

2.3.3. Mixture of FML (mixFML)

While the original FML has shown outstanding capability
when handling heterogeneous clients via collectively learn-
ing of both the global and local models in FL setting, using a
single global model, i.e., derived by equal contribution from
all clients, as the mutual model to perform DML across all
clients limits each client’s local model’s capacity. For exam-
ple, mutual learning relies on proper transfer of knowledge
from “relevant clients”. As the clients number increases (as
often seen in real-world applications), relevant information
might be diluted due to the use of simple averaging, and it can
negatively impact the target local model’s performance, espe-
cially when large heterogeneity (e.g., in-the-wild learning) is
expected. To deal with this issue, we propose a mixture Fed-
erated Mutual Learning (mixFML) that enables the system
to customize the mutual model for each client. Each client
additionally push its local model parameters to the server to
represent its local characteristics, and the server generates a
uniquely customized mutual model by means of weighted ag-
gregation. The weights are computed based on the distances
between the local models that are formulated as:

di,j = ∥θloc,t,ri − θloc,t,rj ∥,

wi,j =
1/di,j∑

k∈K
k ̸=i

1/di,k
, if j ̸= i else 0, ∀i, j ∈ K (2)

where di,j is the parameter-based euclidean distance between
client i, j, θloc,t,ri is the trained local model parameter at
round t after r local epochs, and wi,j is the weight for client
j when generating the mixture weight for client i. The cus-

tomized global model θglob,t+1
i for client i are derived by the

following aggregation formula:

θglob,t+1
i =

∑
k∈K

wi,kθ
mut,t
k (3)

The mixture excludes client i since its own traits are cap-
tured in the local model already. The larger wi,j implies that
client i and j are relatively similar (as measured in terms of
distances of the parameter space).

2.4. Evaluation Metrics

To simulate a real-world use case, we split each participant’s
data as training, evaluation and testing sets in a 70/10/20 ratio.
The performance is reported after 5-fold cross validation. As
for evaluation metrics, we use balanced accuracy (BACC),
F1, and Matthews correlation coefficient (MCC). MCC has
recently been argued as a more reliable statistical measure that
would produce a high score only if a binary classifier obtain
good results in all 4 quadrants of a confusion matrix [16].

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental Setup

In our experiment, we use two real-world datasets to evaluate
our proposed mixFML on stress detection using HRV when
comparing with other federated methods.

• Exp1: Performance comparison among FL methods for
stress detection. In TILES-2018 dataset, we randomly
assign 1 participant to each client for federated model
training, where the number of clients is set to the range
of [5/15/25], and the same process repeats on Firefighters
with the range of [5/15/23].

• Exp2: We further examine the influence of data quantity by
setting the availability of training data quantity from 20%
to 80% of total data in both datasets and compare the per-
formance among different FL methods.

The compared FL alternatives in both experiments include
conventional FedAvg [17] that is the most basic form of FL;
FedProx [18] is proposed to handle heterogeneity (the proxi-
mal term µ set to 0.01). The above two alternatives involve FL
scheme in deriving a global model used for every client. Lo-
cal model indicates every client has its private model trained
on its own data solely. FML is a SOTA learning scheme that
adopts mutual learning to train every local private model to
be used for each client. Our proposed model is termed as
mixFML. Both FML and our proposed mixFML have α and
β set to 0.5. For all FL models, a MLP network with two
hidden layers of size 64 and 16 followed by ReLU activation
layer and a softmax for the output layer is used for global and
local models; dropout layer and L2 parameter are applied to
avoid overfitting. The federated models are trained for 100
rounds with 5 local epochs and learning rate set to 0.001.
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TILES-2018 Firefighters

Method 5 Clients 15 Clients 25 Clients 5 Clients 15 Clients 23 Clients

BACC F1 MCC BACC F1 MCC BACC F1 MCC BACC F1 MCC BACC F1 MCC BACC F1 MCC

FedAvg 0.518 0.654 0.038 0.536 0.621 0.073 0.601 0.622 0.201 0.521 0.801 0.048 0.481 0.839 0.065 0.593 0.780 0.211
FedProx 0.509 0.555 0.018 0.531 0.635 0.065 0.626 0.639 0.250 0.561 0.794 0.124 0.543 0.801 0.089 0.597 0.776 0.214
Local 0.558 0.648 0.115 0.617 0.654 0.232 0.639 0.673 0.278 0.730 0.864 0.449 0.740 0.870 0.463 0.761 0.835 0.514
FML 0.564 0.661 0.127 0.620 0.669 0.239 0.632 0.667 0.264 0.742 0.858 0.458 0.740 0.878 0.474 0.754 0.830 0.537
mixFML 0.579 0.653 0.156 0.649 0.712 0.301 0.672 0.697 0.344 0.733 0.878 0.473 0.748 0.883 0.492 0.783 0.847 0.555

Table 2: Performance comparison among FL variants for personal stress detection on TILES-2018 and Firefighters.
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Fig. 3: MCC scores among personalized FL methods as train-
ing data quantity increases on TILES-2018 and Firefighters.

3.2. Results and Analysis

3.2.1. Performance Comparison

The left side of Table 2 summarizes the performance com-
parison among various federated learning variants for stress
detection on the TILES-2018 dataset. Our proposed model
mixFML consistently outperforms the other methods across
multiple evaluation metrics considering different number
of clients enrolled in the FL setting. Specifically, mixFML
achieves the highest BACC (1.5%, 2.9%, 4.0% improvements
against FML) and MCC (2.9%, 6.2%, 8.0% improvements
against FML) values for all client configurations. Com-
paratively, those using a single global model (FedAvg and
FedProx) exhibit low performances, with FedProx slightly
surpassing FedAvg in terms of F1 scores and MCC, partic-
ularly as the number of clients increases. This is likely due
to the high heterogeneity observed for the in-the-wild setting
where a single global model can not well capture the nuances
of the diverse participants. In fact, the use of Local model
for each client demonstrates that even without mutual learn-
ing, the client-specific model outperforms the single global
model, but still falls short of the performance achieved by
mixFML.

We again verify the proposed mixFML on the in-house
Firefighters dataset. The experimental results are shown
in the right side of Table 2. MixFML continues to be the
best performing model over all other FL methods for all
client configurations, achieving 1.5%, 1.8%, 1.8% MCC im-
provements against FML. An obvious gap exists among those
with/without personalized local models, indicating the critical
need of client-specific personalization for stress detection us-
ing HRV in-the-wild. In both experiments, mixFML method

emerges as a consistently strong performer for stress detec-
tion, the larger the number of clients (i.e., the larger the client
heterogeneity), its capability is further demonstrated. The
ability to maintain high BACC, F1, and MCC values suggests
its adaptability and reliability in real-world scenarios.

3.2.2. Influence of Data Quantity

We further systematically evaluate the performances as a
function of data quantity. We increase the training data
quantity from 20% to 80% of all data, leaving the 10% for
evaluation and 10% for testing. We experiment with the three
personalized federated learning alternatives (FML, mixFML,
and Local for comparison) using the highest number of clients
(25, 23) in both datasets. Fig 3 summarizes the experimental
results. In general, all methods intuitively experience gradual
improvements as more training data become available, except
80% setting. In both datasets, FML showcases its stability
of maintaining competitive performances and consistently
outperforms Local in Firefighters. Our proposed mixFML
shows the best performances particularly when the amount
of data quantity reaches between 40% to 60%, that is 15 to
20 samples (about 2-3 weeks) given a client has about 35
to 40 samples (about 5-6 weeks of data). We observe under
limited data scenario, our method can be sub-optimal. It is
likely due to the fact there is not enough data yet to well-train
the local models that can be used in customizing the unique
client-specific global model for mutual learning.

4. CONCLUSION
In this work, we propose a novel distance-based mixture
weights to tailor the global model used in mutual learning for
enhanced private local model learning in a federated scheme.
This method is evaluated on stress detection using HRV in
two in-the-wild datasets. Our proposed approach outperforms
other FL alternatives, demonstrating its capability in handling
heterogeneous clients better. We further shows its capability
of maintaining stably high performance when dealing with an
increasing number of clients. We further examine the effec-
tive data quantity required to utilize this FL strategy. In our
future work, we would continue to explore the relationship
across clients and investigate the effect of composition in
deriving the customized global model, such as reducing the
number of clients in forming the global model, which could
also lead to a more efficient learning scheme operable on
much more clients with less demand on data quantity.
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Cantero, Isabel Marı́a Gómez-González, Sergio
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