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Abstract—Automatic sensing of emotional information in speech is important for numerous everyday applications. Conventional
Speech Emotion Recognition (SER) models rely on averaging or consensus of human annotations for training, but emotions and raters’
interpretations are subjective in nature, leading to diverse variations in perceptions. To address this, our proposed approach integrates
the rater’s subjectivity by forming the Perception-Coherent Clusters (PCC) of raters to be used to derive expanded label space for
learning to improve SER. We evaluate our method on the IEMOCAP and MSP-Podcast corpora, considering scenarios of fixed and
variable raters, respectively. The proposed architecture, Rater Perception Coherency (RPC)-based SER surpasses single-task models
with consensus labels by achieving UAR improvements of 3.39% for IEMOCAP and 2.03% for MSP-Podcast. Further analysis provides
comprehensive insights into the contributions of these perception consistency clusters in SER learning.

Index Terms—speech emotion recognition, multi-tasking, rater subjectivity, perception consistency clusters
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1 INTRODUCTION

Speech Emotion Recognition (SER) has found many ap-
plications in domains such as customer call centers [1], voice
analysis [2], and spoken dialogue systems [3], to incorporate
emotional intelligence for recognizing user emotions. Over
the years, many solutions have been proposed for SER train-
ing, taking into account different aspects of comprehensive
modeling. However, most of these studies tend to follow a
conventional approach, training the model with aggregated
values or consensus labels [4]–[6], which uses a single point
(consensus) approach. Recently, there has been a focus on
label ambiguity by adopting a distributed emotion learning
approach, such as soft-labelling [7], [8], and multi-labelling
[9]–[11]. These studies have shown promising results and
are better than the conventional approach, but they empha-
size only the label ambiguity by learning the dominant emo-
tions and treating the ratings as independent and identically
distributed.

Psychological research suggests that there exists an indi-
vidual difference in emotional sensitivity [12] and person-
ality dimensions (such as introversion-extraversion, moti-
vation, anxiety, etc.) that can influence the emotional con-
structs of rater during information processing, with situa-
tional moderators such as time pressure, time of day, and
incentives also having an impact [13]. These factors can
affect the moment-to-moment report of perceived emotions
for judgment of dynamics and naturalistic expressions in
speech prosody [14]. Also, some researchers argue that
emotions, both positive and negative, are subjective and
can have varying meanings for each individual [15], [16].
Also, emotions can encompass different emotional profiles,
and their prevalence may vary across cultures [17] and age
groups [18]. Positive emotions like Happiness can be classi-
fied into different profiles, such as excitement and enthu-
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siasm, which are characterized by high arousal levels, and
calmness and joy, which are characterized by low arousal
levels [19], [20]. On the other hand, negative emotions can be
classified based on between-category differentiation, where
emotions like Anger and Sadness fall into high- or low-
intensity categories [21], [22]. But all these broad category
emotions such as Happiness, Anger, Sadness have fine-grained
categories that distinguish closely related emotions, for
example, Anger and Frustration [16]. This underscores the
importance of considering rater ambiguity in SER training
and specifically modeling it along with consensus labels to
include the raters emotional subjectivity in learning.

The standard approach to examining rater subjectivity is
outlined in recent studies [23]–[25] typically involves either
averaging the outputs of multiple rater-specific models or
learning the individual rater perception independently in a
multi-task setting. However, these methods may give rise to
two key concerns. Firstly, such learning can lead to highly
complex and branched multi-task architectures that make
it challenging to model individual perceptions. Secondly,
these individual multi-task approaches raise issues with
missing labels since it is rare to have a corpus where all
samples are rated by each rater. Moreover, this architecture
does not take into account corpora with variable raters or
workers (e.g., MSP-Podcast). In this work, our proposed
method aims to tackle these issues by introducing a novel
approach that clusters raters into coherent groups based on
their consistency in perception. This allows the integration
of raters’ subjectivity into the SER task while avoiding
the complexity of learning individual rater perceptions.
We evaluate the perception consistency correlations on the
perceptual scales of inter-rater consistency. Our method
involves simultaneous modeling of the perception-coherent
clusters PCC of raters, enabling us to address the two
aforementioned concerns by integrating rater subjectivity in
a controllable manner in speech emotion learning.

Specifically, this study proposes a method to integrate
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the rater ambiguity in SER by leveraging the emotional sub-
jectivity of raters through a set of PCC. The homogeneous
clustering is based on the inter-rater similarities, evaluated
on perceptual scales of inter-rater consistency (IRC) and
rater consistency with ground truth (RC-GT). Rather than
using the conventional approach of averaging the outputs
of multiple rater ratings (e.g., consensus) or considering just
the label subjectivity (e.g., soft labeling) or independently
learning individual rater’s perception, our work takes a
joint approach. That is, we propose a method of modeling
the raters’ PCC clusters, consisting of majority (MajP) and
minority (MinP) raters’ perceptions with the consensus-
based emotion classifier (MV). This technique reduces the
complexity in modeling by clustering and centering the
raters’ subjectivity into MajP and MinP, leading to improved
performance of the SER task and also addressing the issue
of missing labels. Moreover, In order to minimize the dif-
ferences between feature representations originating from
the same stimuli, we also incorporate the Maximum Mean
Discrepancy (MMD) loss in our learning. The proposed
rater-perception coherency-based (RPC) multi-perception
learning method is tested and analyzed on two corpora:
IEMOCAP [26] (with a fixed number of rater) and MSP-
Podcast [27] (with the variable number of rater), resulting in
the unweighted average recall (UAR) of 63.92% and 57.95%,
respectively. This work introduces the concept of learning
in a rater-expanded label space, which integrates the rater’s
emotional subjectivity and considers their perception homo-
geneity to achieve better SER performance.

2 RELATED WORKS

SER can be approached from various perspectives, with a
focus on either the speaker’s side or the rater’s side. In this
study, our emphasis lies on the rater’s side of SER. Con-
ventionally, affect-related recognition models have relied
on single-label setup, where labels from multiple raters are
combined using methods like majority voting or averaging
[28], [29]. However, these consensus labels have limitations
as they may introduce biases and fail to capture the subjec-
tive nature of emotions as well as individual variations in
perception [12], [30], [31]. Hence, the objective of our work
is to advance SER modeling by leveraging a large rater-
expanded label space.

Emotional ambiguity presents a common challenge in
emotion recognition due to the subjective nature of emo-
tions and variations in human interpretations, as shown
in previous studies [12], [17]. Recently, the field of SER
has placed greater emphasis on mitigating these disparities
stemming from the subjectivity of emotions and individual
behaviors. Within the scope of this SER study, rater ambigu-
ity addresses inconsistencies among raters interpretations
when assigning emotional labels, while label ambiguity is
concerned with the inherent ambiguity in emotion labels
that originate from the diverse and subjective nature of
emotions. While recent studies have explored rating am-
biguity through adaptive learning, multi-task learning, and
personal profiles [32]–[35], they do not explicitly account for
the subjectivity for each rater. Despite the known impact of
rater ambiguity on emotion perception [36], [37], previous
research in emotion recognition has often overlooked this

Fig. 1: Literature technique incorporating subjectivity in SER
and our proposed approach present on the spectrum of
rater ambiguity and label ambiguity; majority vote as MV,
individual-rater learning as IA, and soft, hard, and muti-
labeling as SL, HL, and ML, respectively.

factor, with only a few recent studies specifically considering
rater’s emotion perception.

Most of the work that accounts for the rater’s ambiguity
uses label ambiguity (soft labels, multi-label, etc.) to deter-
mine the underlying emotion distributions by employing
techniques such as rater reliability or at the extreme, incor-
porating each rater’s perceptions directly through a multi-
task approach. Also, there has been a growing emphasis
on utilizing ordinal regression techniques [38], [39]. These
approaches have proven advantageous in effectively cap-
turing and modeling the ordinal nature of emotion labels.
However, there has been no consideration given to each
rater’s own characteristics who assigned the labels to the
samples. Our proposed method fills this gap by explic-
itly accounting for rater ambiguity and leveraging a rater-
expanded label space in SER modeling. Fig. 1 depicts the
literature methods and proposed method on the spectrum
of label and rater ambiguity. The literature on incorporating
ambiguity in SER learning can be divided into two main
categories. The first category focuses on label ambiguity,
which involves the ambiguity in emotion labels assigned
to a given stimulus without considering any specific rater
behavior. The second category addresses rater ambiguity,
which not only considers the ambiguity in the annotations
but also takes into account the subjective nature of the raters
in learning.

2.1 Studies Exploring Emotional Label Ambiguity
Several approaches have been proposed to deal with label
ambiguity in learning to improve SER. For instance, soft-
label learning is one of these methods, which takes into
account all the ratings provided by multiple raters instead
of using a one-hot vector to represent the consensus label.
Also, multi-label learning is another technique [10], [11],
which considers the co-occurrence of multiple emotions
in speech. These approaches consider the ambiguity and
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Fig. 2: Rater-wise emotional perception variation present in IEMOCAP ((a)-(d)) and MSP-Podcast ((e)-(h)) corpora over
primary emotions; for IEMOCAP, six raters (E1, E2,.., E6) and for the MSP-Podcast corpus, we selected the top 50 raters
(W1, W2, ..., W50) based on higher annotation frequency which are consistent to represent the range of rating ambiguity.

variability among the ratings during training and have been
demonstrated to achieve better performance than using
consensus labels alone [7], [8], [40], [41]. However, these
methods do not include any rater behavior in learning
by considering ratings as independent and identically dis-
tributed.

Similarly, few studies [8] have proposed approaches that
address emotional subjectivity by using both hard and soft
labels in a joint manner by involving multiple models in
learning. Also, another work [42] utilizes a multi-task model
that integrates disagreement over ratings as information in
a multi-task modeling approach by measuring the degree
of dissimilarity between the model’s predictions and the
soft-label targets. However, all these approaches incorporate
label ambiguity to the extent of learning emotions but do not
explicitly consider the source of the ratings at all.

2.2 Studies Exploring Rater Ambiguity
In recent years, there has been a growing emphasis on
addressing rater ambiguity in addition to label ambiguity in
the field of emotion recognition. Researchers have proposed
several methods to mitigate the impact of rater ambigu-
ity on the performance of emotion recognition systems.
One approach [43], [44] involves utilizing multiple ratings
to identify accurate or correct ratings by considering the
disagreements among raters. These studies also take into
account the expertise level of raters in the learning process
[43], [44], where the error rate of each rater is modeled
to depend on the data samples they annotate [43]. An-
other study [45] introduces a Gaussian process (GP)-based
method to handle multiple annotations independently of the
raters’ expertise level. Another approach considers both the
expertise and reliability of raters in a multitask manner [46],
[47], assuming independence among raters. Also, studies

like [7], [48] focus on individual learning for every single
rater in a multitask setting to address the subjectivity of
emotions. More recently, an idea proposed in [49] suggests
modeling subjective affect-related tasks by considering sce-
narios where multiple raters provide labels for an input
sample in an affect-related task.

However, most of these approaches either depend on
averaging across multiple raters’ learning in multi-modal
tasks or independently modeling each rater’s perception in
a multi-task manner. These methods can lead to complex
architecture and an inability to handle missing labels, es-
pecially when there exist multiple and inconsistent raters.
To overcome these limitations, we propose a new approach
that considers the coherency of rater perceptions as PCC,
which enables us to incorporate rater subjectivity but in
a controllable manner into the learning process of rater
ambiguous multi-perception SER.

3 RATER AMBIGUITY OVER CORPORA

3.1 Corpora
This work considers the IEMOCAP [26] and MSP-Podcast
[27] SER corpora to evaluate our proposed method. Both the
IEMOCAP and MSP-Podcast corpora have been extensively
annotated by human raters, providing ground truth labels
for emotions. These corpora serve as reliable sources for
training and evaluating SER models, enabling researchers
to assess the effectiveness and generalizability of their pro-
posed approaches.

IEMOCAP: The IEMOCAP corpus is a dataset of approxi-
mately 12 hours of dyadic audio-visual interactions in the
English language. It features 10 professional actors (five
male and five female) acting out scripts and realistic sce-
narios over five sessions. The corpus includes both discrete
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Fig. 3: The emotion profiles showing raters label ambiguity
(%) in corpora; for each Ground Truth label, the variation
in emotion rating over some frequent emotion list is shown
with an average over number of raters.

and continuous annotations, which are provided by 2 to 4
raters for each stimulus. Overall, this corpus contains 10,039
utterances with an average duration of 4.5 seconds. The
annotations were completed by a total of 12 raters, with
six annotating for primitive attributes and six for emotional
categories. This study specifically focuses on the emotional
category labels and their corresponding raters, namely E1,
E2, E3, E4, E5, and E6, to analyze the emotional subjectivity
of the raters. The evaluation for this corpus is conducted
using leave-one-session-out cross-validation over 4490 sam-
ples (consisting of four major emotions).

MSP-Podcast: The MSP-Podcast corpus (v.1.10) [27] is a rich
database of diverse emotional naturalistic speech samples
collected from various podcast recordings. It is increasingly
being used for research on SER due to its scale and availabil-
ity of emotionally balanced dialogues from a large number
of speakers. Each sample in the corpus is rated by at least
five different workers with primary emotions, secondary
emotions, and emotional attributes. The database contains
a total of 166 hours of data. To analyze the raters’ ambiguity
over this large and variable raters corpus, we consider the
workers who have annotated at least 10% samples of the
corpus, and the samples that have been rated by these
selected raters only are chosen for further experiments.
This way, we have selected around 25,014 samples with
predefined train-val-test splits.

The aim of this work is to evaluate the performance of
SER on four primary emotions as Neutral, Happiness, Anger,
and Sadness over the IEMOCAP and MSP-Podcast corpora.
Additionally, we also consider some frequent emotions like
Frustration and Excitement in IEMOCAP and Contempt and
Surprise in MSP-Podcast to investigate the rater ambiguity
in majority and minority perception learning tasks. We
selected these fine-grained distinguishable emotions based
on their higher frequency of occurrence in the corpora. To
observe the emotional perception variation over corpora,
we investigated raters’ emotional perceptions in both the
IEMOCAP and MSP-Podcast corpora. The analysis plots
are presented in Fig. 2, where we plot the distribution of
each rater’s annotations across all samples. In the case of
IEMOCAP, we examined the annotations of six raters. Con-
versely, for the MSP-Podcast corpus, we selected the top 50
raters based on their higher frequency of ratings, effectively
covering a range of rating ambiguities within the corpus and
are consistent in this analysis. Fig. 2 shows a holistic view
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Fig. 4: Rater-wise emotional perception variation present in
IEMOCAP ((a)-(c)) and MSP-Podcast ((d)-(f)) corpora for
major emotions (Happinesss, Anger, Sadness); A1, A2, and
A3 shows standard names for raters annotating for same
samples in respective corpora and MV is majority vote.

of emotional perception dynamics in corpora indicating the
presence of ambiguity in distribution and thus the presence
of raters’ ambiguity and emotional subjectivity in corpora.

3.2 Rater Ambiguities in Emotional Corpora
To examine the presence of emotional ambiguity in the cor-
pus, we compute the emotion profiles (descriptions of dif-
ferent emotions present) for each primary emotion in the re-
spective corpora. These profiles are obtained by aggregating
the perceptions of all raters for each emotion category across
all samples to create a consensus. Fig. 3 shows the emotion
ambiguity present in each emotion for both corpora. These
profiles capture the variation in emotion ratings for each
Ground Truth label across a set of most prominent emotions
including Neutral, Happiness, Anger, Sadness, Surprise, Fear,
Disgust over both corpora and Frustration, Excitement for
IEMOCAP and Contempt for MSP-P. The estimation involves
taking the majority vote from the ratings provided by mul-
tiple raters. It is important to note that the emotion profiles
are calculated for the entire database and encompass all
emotions and while plotting only considered emotions are
shown; for example the “others” category is not included.
Therefore, the summation of the profiles may not necessarily
equal 100 due to the exclusion of a few categories. This
emotion profile demonstrates the existence of ambiguous
emotional subjectivity in the ratings provided by the raters
in both corpora. Here, we can observe that the Ground truth
emotions mostly vary among fine-grained distinguishable
emotions, for example, for Anger emotion, the ambiguity
present over Frustration and Contempt in IEMOCAP and
MSP-Podcast corpora, respectively.

To observe the presence of ambiguity in the raters who
actually provide these ratings, we generate the label space
with arousal-valence (AV) plot for different raters of each
corpus depicted in Fig. 4. In each corpus, we consider
the three raters that annotate the same samples and are
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Fig. 5: Figure illustrates the clustering procedure employed in our novel approach, comprising three key components. The
initial component is dedicated to evaluating perception coherency, followed by the estimation of PC cluster bins in the
second component, and finally, the third component is focused on PCC label centering.

referred to as A1, A2, and A3, while MV represents the
majority vote in Fig. 4. In Fig. 4, distinct colors are used to
represent each label space for A1, A2, A3, and MV. Within
the plot, 90% confidence ellipses show the distribution of
labels from both raters and the MV on the AV scale. These
label space plots show that both the IEMOCAP corpus ((a)-
(c)) and the MSP-Podcast corpus ((d)-(f)) exhibit variations
in emotional perception among raters for the four major
emotions (Happiness, Anger, Sadness). This analysis reveals
that different raters have varying perceptions of different
emotions for the same set of samples. Furthermore, we
see that some raters overlap more with others, indicating
a scaled level of rater ambiguity that varies from low to
high. Based on these analysis observations, it is evident
that integrating raters’ subjectivity can be important for
learning a reliable SER model. In the following sections, we
will provide a detailed analysis of raters’ subjectivity based
on their perception consistency, as well as the perception-
coherent cluster definition used in this study.

4 PERCEPTION-COHERENT CLUSTER DEFINITION

Perception-coherent cluster (PCC) is a concept we use to
define clusters of raters with similar perception consistency
in rating emotions. In other words, raters in the same
cluster exhibit a similar level of agreement or consistency
in their ratings across different emotional categories. This
concept is based on the assumption that raters with similar
perception consistency are more likely to rate emotions in
a similar way and their ratings are more reliable than those
of raters in different homogeneous clusters. By using PCC
to group rater with similar perception consistency, it can
be easier to integrate the rater ambiguity as information
on the emotion recognition models. The clustering process
involved in our proposed approach is depicted in Fig. 5. It
comprises three primary components. The initial segment
concentrates on gauging perception coherency through the
analysis of raters’ perception consistency. The subsequent
segment involves the estimation of PC cluster bins to orga-
nize these raters into the corresponding clusters. The final
part is dedicated to PCC label centering to have labels for
each cluster. The following section will elaborate on each of
these processes.

4.1 Perception Coherency Estimating Methods

In order to capture the diversity of speech emotions across
a large rater-label space, we employ a PCC approach to
group individual raters with similar perceptions. To achieve
this, we analyze the rater’s perceptual consistency from two
perspectives: 1) inter-rater consistency (IRC), and 2) rater
consistency with ground truth (RC-GT), by analyzing the
training portion of the corpora (excluding testing samples).
This method is used as an approach to create homogeneous
clusters of consistent perceptions among the raters.

Inter-Rater Consistency (IRC): We use the agreement be-
tween raters’ perceptions by comparing their ratings to see
how closely their emotions perceptions are aligned. For
example, A1 is perceiving Anger emotion for a sample,
then, how similar the other rater’s perception is to A1. To
measure this perceptual similarity between raters, we utilize
the Cohen’s Kappa (κ) [50] statistic, which calculates the
perceptual consistency between each pair of raters, such as
between A1∼A2, in terms of the perception consistency (PC)
value.

Rater Consistency with Ground Truth (RC-GT): In addition
to examining the raters’ perception consistency with each
other, we also investigate their agreement with the voted
consensus ground truth labels to estimate the rater consis-
tency with ground truth. To accomplish this, we evaluate
the consistency of each rater’s emotional perception with
both other raters and with the ground truth. Specifically,
we consider the agreement between each pair of raters and
the majority vote. For instance, we determine whether the
perceived emotion of Anger by A1 and A2 is consistent
with the majority vote (MV), i.e., A1∼A2∼MV. To quantify
the perception consistency for this RC-GT analysis, we use
the same Cohen’s Kappa (κ) measure as in the previous
analysis. By analyzing the raters’ perception consistency
with the ground truth labels, we aim to gain insights into
the level of inter-rater agreement present in the corpus.

4.2 PC Cluster Bins

The analyses of IRC and RC-GT provide insights into the
consistency of rater perceptions. Perception correlation (PC)
matrices are computed for each perspective in both corpora,
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(a) IEMOCAP (b) MSP-Podcast

Fig. 6: Raters distribution in different histogram bins with
respect to perception correlation (PC) values for IEMOCAP
and MSP-Podcast corpora.

revealing that the RC-GT method yields higher PC values as
it takes into account the raters’ agreement with the majority
vote. To cluster raters into homogeneous groups, we set the
average PC values as a reference. We first assign raters of
varying PC values to histogram bins and then divide them
into two groups based on a threshold (default = number
of bins * 1/2). The group with a lower mean is designated
as the minority-perception (MinP) raters group, while the
group with a higher mean is the majority-perception (MajP)
raters group. To see the difference in PCC methods (IRC and
RC-GT) for raters distribution in different bins with respect
to perception correlation (PC) values, we plot the Kernel
Density Estimation (KDE) shown in Fig. 6 for IEMOCAP
and MSP-Podcast corpora. Here, we can observe noticeable
changes in the distribution curves for both methods across
both the IEMOCAP and MSP-Podcast corpora. Particularly,
in the case of IEMOCAP, we observe more distinct differ-
ences in the bin distribution between the IRC and RC-GT
methods.

4.3 PCC Label Centering

After obtaining the majority (MajP) and minority (MinP)
PCC clusters of raters based on their perception consistency
from Section 4.1, the next step is to centering the rater
emotion ratings in these clusters to come up with the PCC
labels. However, as not all samples are rated by each rater,
several possible scenarios may arise while centering the
cluster labels. Hence, we have established four rules for
generating the PCC labels:
• If the majority of raters have a similar perception (the

most probable case), we consider the majority vote as the
label.

• If only one rater has rated a sample, we consider that
rating as the cluster label since these groups of raters have
high consistency in their perceptions.

• If all the ratings for a sample are different, we consider the
rating with a high confidence rate with the ground truth
as the cluster label (i.e., raters’ overall consistency with
ground truth labels).

• If there is no rating for a specific sample (unless all raters
within the cluster have not provided a rating for that
particular sample), we consider the cluster label as “NaN”
and exclude it while modeling the SER.

Fig. 7 illustrates the distribution of labels for the consen-
sus (MV), majority raters’ perceptions (MajP), and minority
raters’ perceptions (MinP) in both corpora. It can be ob-
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(d) MSP-Podcast (RC-GT)

Fig. 7: Emotion distribution of majority vote (MV) and
different cluster labels (MajP to MinP) from PCC approach
(IRC and RC-GT) for IEMOCAP and MSP-Podcast corpora;
Since only the distribution of the considered emotions is
presented here, the percentages may not be sum up to 100%.

TABLE 1: PCC labels consistency table with MV, MajP,
MinP for IEMOCAP and MSP-Podcast corpora in terms of
Cohen’s Kappa (κ).

IEMOCAP MSP-Podcast
IRC RC-GT IRC RC-GT

MV-MajP 0.38 0.40 0.43 0.41
MV-MinP 0.25 0.28 0.30 0.34

MajP-MinP 0.52 0.50 0.49 0.47

served that in both corpora, the majority perceptions (MajP)
intuitively exhibit high similarity to the consensus (MV) and
predominantly peak towards major emotions. Conversely,
the distributions of minority perceptions (MinP) tend to
peak more towards fine-grained distinguishable emotions.
This distribution highlights the raters’ ambiguity over the
label space and motivates our work of learning in a rater-
expanded label space to improve emotion recognition.

4.4 PCC Label Analyses
To gain a deeper understanding of the PCC labels, which
represent the centering among raters’ emotions with similar
perception consistency, related to their emotion profiles and
cluster correlations, this section involves examining the rela-
tionship between the perception-coherent cluster (PCC) labels
with their cluster-wise emotion profiles, and their coherency
with each other and also with MV.

Table 1 shows the coherency table to analyze these
clusters’ consistency with MajP and MinP, and also with the
consensus labels MV using Cohen’s Kappa values. Based
on the observations from Table 1, it is evident that the MV
exhibits higher consistency with the majority-perception
(MajP) with (0.38, 0.40) for IEMOCAP and (0.43, 0.41) for
MSP-Podcast compared to the minority-perception (MinP)
with (0.25, 0.28) for IEMOCAP and (0.30, 0.34) for MSP-
Podcast over both IRC and RC-GT methods, respectively.
This observation from Table 1 is expected since the major-
ity perception aligns with the overall prevalent viewpoint.
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Fig. 8: Emotion profiles for rater ambiguity (in %) of proposed PCC-based rater clusters (MajP to MinP) for IEMOCAP and
MSP-Podcast corpora over both IRC and RC-GT methods.

Additionally, there is a notable correlation between MajP
and MinP (IEMOCAP with 0.52 and 0.50; MSP-Podcast with
0.49 and 0.47 for IRC and RC-GT methods respectively),
indicating that these perceptions are diverse yet exhibit a
level of consistency. This consistent pattern can be observed
in both corpora with both clustering methods, suggesting its
generalizability.

Fig. 8 depicts the emotion profiles of the rater clusters
(referred to as MajP to MinP) based on the PCC approach for
the IEMOCAP and MSP-Podcast corpora, focusing on four
major emotions (Neutral, Happiness, Anger, and Sadness). The
analysis of the emotion profiles in Fig. 8 reveals interesting
patterns. It shows that the ratings of the MajP cluster exhibit
higher consistency towards these major emotions compared
to the MinP cluster, where the raters tend to center their
perceptions around a few fine-grained distinguishable emo-
tions instead of just the primary emotions. For instance, the
Happiness emotion profile also includes Excited and Surprise
for the IEMOCAP and MSP-Podcast corpora, respectively.
This observation shown in Fig. 8 demonstrates the presence
of ambiguity among raters with minority perceptions re-
garding the primary emotions.

5 RESEARCH METHODOLOGY

5.1 Feature Extraction and Encoding
In this study, we utilize vq-wav2vec [51] as our feature
set. This model provides speech representation by learning
quantized features of raw audio for future time-step pre-
diction. It incorporates multiple convolutional and residual
blocks as a local encoder to encode the speech samples
into a sequence of embeddings. The model is trained using
self-supervised contrastive loss, which implicitly models the
mutual information between the context and future audio
samples. It also includes a quantization layer that uses k-
means clustering constraints in vector quantized variational
autoencoders. The resulting speech representations are then
fed into a multi-head transformer, which employs self-
attention to encode the input sequence.

This feature extraction block remains consistent through-
out our experiments, with the input being the vq-wav2vec
speech representations from audio samples in the corpora.
The self-attended discrete latent embedding, acquired from
this block is first averaged and subsequently undergoes fur-
ther processing within the architecture for emotion category
classification.

5.2 Multi-Perception SER Learning
This section describes our approach to incorporating a
rater’s emotional subjectivity into SER using a rater-
expanded multi-perception label space (the PCC approach).
We consider four major emotions, namely Neutral, Anger,
Happiness, and Sadness. Fig. 9 depicts the model architecture
for 4-category SER. It consists of two main components of
our study: (a) the identification of RPC clusters based on the
consistency of their perception, and (b) the training of the
RPC multi-perception SER, which combines learning with
respect to rater ambiguity and consensus label learning.
Our proposed SER part of the architecture (b) has three
branches designed to learn three different tasks: two for
integrating raters’ perceptions (MajP and MinP), and one
for conventional consensus-based (MV) SER learning. To
optimize the model, we use different loss functions during
training. Specifically, we use Eq. 1 for MajP, Eq. 2 for MinP,
and Eq. 3 for MV.

LMajP = EXS ,yMajP
[∥CE(T (XS), yMajP )∥] (1)

LMinP = EXS ,yMinP
[∥CE(T (XS), yMinP )∥] (2)

LMV = EXS ,yC
[∥CE(T (XS), yMV )∥] (3)

where CE is the cross-entropy function, T is the transformer
function, XS is the source features, and yMajP , yMinP , yMV

is the emotional labels from MajP, MinP and MV.
To improve the performance over MV, we also include

the maximum mean discrepancy (MMD) loss in our pro-
posed architecture. This loss is used to measure the dif-
ferences between the encoded representations of MajP and
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Fig. 9: This figure illustrates the model architecture for 4-category SER, which includes two parts: (a) the estimation of
homogeneous clusters of raters based on inter-rater perception consistency, and (b) the multi-perception SER training that
integrates rater-ambiguity conditioned learning jointly with consensus label learning using the clusters from part (a).

MinP in order to reduce their feature space discrepancies, as
both of these representations are produced from the same
stimuli. The equation for the MajP-MinP feature difference
reduction loss is shown as Eq. 4.

LD = MMD(MajP,MinP ) (4)

where MMD is MMD loss function, MajP and MinP is
the encoded features for MajP and MinP respectively.

For each task, we employ four fully connected layers
for emotion classification. Overall the complete loss for
the proposed SER with rater-expanded label space learning
with PCC cluster is shown below:

L = (LMajP + λ ∗ LMinP + LMV ) + LD (5)

where LMajP and LMinP are the losses for the MajP and
MinP SER tasks respectively, LMV is for MV SER and LD is
for MMD loss. λ is the weight parameter and constant with
λ= 0.6 for model with IEMOCAP and λ=0.8 for model with
MSP-Podcast.

In this study, we propose that leveraging rater ambiguity
through PCC clusters in the learning process can enhance
the predictive effectiveness of the MV-based SER models. To
maintain consistency with previous studies, in this context,
the inference process is centered around the final branch,
which is the MV classifier trained with both MajP and
MinP, and serves as the primary component for making
predictions.

6 EXPERIMENTAL SETTINGS

6.1 Parameters
In all the conducted experiments, we utilize the Adam
optimizer with a learning rate of 0.0001 along with a de-
caying factor. The proposed systems are trained using back-
propagation, employing the loss function specified in Equa-
tion 5. On the other hand, the baseline systems are trained
only with the cross entropy loss function. The network is
trained for a maximum of 50 epochs, utilizing a batch size
of 16 and implementing early stopping. To assess the perfor-
mance of the models in multi-class classification tasks, the
evaluation metrics used are the Unweighted Average Recall

(UAR) and the Weighted F1 score (wF1). Furthermore, the
Recall score (Recall) is employed to evaluate the specific
emotion SER performances.

6.2 Experiments
6.2.1 Baseline Experiments
This study contains a range of baseline models that aim
to explore and compare different methodologies related
to rater-expanded learning for SER. The first experimental
setup focuses on the single-task (ST) approach, which is
the conventional consensus-based SER using a majority vote
(MV). Another baseline approach addresses label ambiguity
in SER learning through the use of soft-labelling (Soft-L,
where each rated value is divided by the total number
of annotations), hard+soft-labelling (Hard+Soft), and multi-
labelling (Multi-L) models. For Soft-L, we adopt the same
settings as in [40], while for Hard+Soft and Multi-L, we refer
to [8] and [10] respectively. Additionally, we incorporate
an individual-rater multi-task (IA-MT) SER baseline, which
models each rater’s perception independently, as described
in [24]. By conducting these diverse experimental setups,
we aim to gain valuable insights into the effectiveness and
performance of each approach compared to our proposed
method in handling rater subjectivity and label ambiguity
in SER.

6.2.2 Ablation Experiments
In this study, we propose a novel approach called the rater-
perception coherency-based (RPC) multi-perception learn-
ing method for integrating rater subjectivity in SER tasks.
To gain a comprehensive understanding of the proposed
approach and its variants, we conduct various ablation
experiments to analyze further the effectiveness of differ-
ent components in the proposed approach. Specifically, we
investigate the performance of the only-MajP model, which
focuses solely on the majority perceptions, and the only-
MinP model, which emphasizes the minority perceptions.
Additionally, as we also use the MMD loss in the proposed
architecture, we investigate the impact of incorporating the
MMD loss in the SER models by comparing the performance
of the SER models with MMD (proposed RPC) and without
MMD loss (MajP+MinP).
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TABLE 2: Performance table with proposed methodology
(RPC); considered baseline models (Soft-L, ST, IA-MT), and
ablations (Ablation) on IEMOCAP and MSP-Podcast cor-
pora in terms of UAR (%) and wF1 (%).

IEMOCAP MSP-Podcast
UAR wF1 UAR wF1

Ba
se

lin
e

ST 60.53 63.01 55.92 57.01
Soft-L [40] 61.48 63.28 56.33 58.36

Hard+Soft [8] 61.55 63.34 56.47 57.18
Multi-L [10] 60.46 61.91 54.93 56.07
IA-MT [24] 61.01 63.98 - -

IR
C

Only-MajP 60.09 61.72 56.71 57.27
Only-MinP 58.71 59.16 54.66 55.34
MajP+MinP 62.83 64.63 57.28 58.50

RPC 63.15 64.29 57.54 59.01

R
C

-G
T

Only-MajP 62.03 64.38 57.27 58.80
Only-MinP 60.80 62.84 57.00 58.03
MajP+MinP 62.65 65.34 57.39 59.33

RPC 63.92 65.98 57.95 60.27

7 EXPERIMENT RESULTS AND ANALYSIS

7.1 Experiment Performance Comparisons

7.1.1 Baseline Comparisons

To compare our proposed rater perception coherency-based
RPC SER models with previous techniques, we opt for
the baseline techniques that operate on the label space as
detailed in Section 6.2.1. Our emphasis here is on the label
side, we use a consistent backbone across all experiments
as explained in Section 5.1. The performance results of
the considered baseline models and RPC including both
proposed methods( IRC and RC-GT) are presented in Table
2. From Table 2, we can see that the proposed RPC models
perform better than the baseline models in both corpora
over both the IRC and RC-GT methods. We can observe
that these improvements are more significant with RC-GT,
for instance, the proposed architecture RPC under RC-GT
shows improvements over IRC with 0.77% of UAR and
1.69% of wF1 on the IEMOCAP corpus. It may be because of
having higher consistency in the perceptions of the RC-GT
method as discussed in Section 4.4. Also, these performance
differences between the PCC methods are more significant
in terms of the wF1 metric than UAR.

From Table 2 we can observe that the RPC model de-
rived from the RC-GT method, achieves superior results
compared to ST, with improvements of 3.45% and 2.03%
in UAR, and 2.97% and 3.26% in wF1 on the IEMOCAP
and MSP-Podcast corpora, respectively. In comparison to
the Soft-L approach, the RPC model demonstrates improve-
ments of 2.50% and 2.70% in UAR, and 1.62% and 1.91% in
wF1 on IEMOCAP and MSP-Podcast corpora, respectively.
Furthermore, when compared to Hard+Soft and Multi-L,
RPC model exhibits significant improvements of 2.37% and
4.07%, as well as 3.46% and 2.64% in UAR and wF1 on
IEMOCAP corpus. A similar improvement can be seen with
the MSP-Podcast corpus. These results highlight the impor-
tance of integrating the rater’s ambiguity information in the
learning process, as even though these methods consider
label ambiguity, they do not fully capture the impact of

TABLE 3: Baseline and proposed model RPC (best perform-
ing over both PCC methods) results shown in overall (in
UAR) and specific emotion (in Recall) for both corpora.

IEMOCAP MSP-Podcast
ST Soft-L IA-MT RPC ST Soft-L RPC

All 60.53 61.48 61.01 63.92 55.92 56.33 57.95
Neu 71.07 63.98 64.35 64.22 57.13 55.05 53.76
Hap 62.95 63.41 59.23 65.31 61.56 55.92 65.02
Ang 48.34 61.58 65.46 67.04 56.03 61.14 66.11
Sad 59.73 56.95 55.11 59.13 48.98 53.27 54.01

rater subjectivity. Additionally, our proposed RPC model
outperforms IA-MT by 2.97% in UAR and 2.00% in wF1 on
IEMOCAP, suggesting that the highly diverse label space
in IA-MT can introduce complexity in learning, potentially
hindering overall SER performance. However, it should be
noted that this approach is not suitable for the MSP-Podcast
corpus due to the presence of variable rates or workers.

7.1.2 Proposed Method Evaluation
To evaluate our proposed idea, this analysis encompasses
investigations that consider the perceptions of Only-MajP
and Only-MinP raters, as presented in Table 2. The results
demonstrate that models utilizing Only-MajP exhibit higher
UAR and wF1 performance on the IEMOCAP dataset,
achieving 62.03% and 64.38% respectively, compared to the
performance of Only-MinP model, which achieves 60.80%
and 62.84% on IEMOCAP. However, when considering both
MajP and MinP jointly (MajP+MinP), the UAR and wF1
performance improves to 63.92% and 65.98% on IEMOCAP.
The similar trend we can see for MSP-Podcast corpus. These
findings suggest that the minority perceptions (MinP) con-
tain relevant emotional information that, when combined
with the majority raters’ perceptions (MajP), can enhance
learning and ultimately improve the overall consensus-
based SER performance. Additionally, the MMD loss func-
tion is employed to reduce the feature space of MajP and
MinP. The results presented in Table 2 indicate that the
RPC model outperforms the MajP+MinP model, with im-
provements of 1.27% and 0.64% in UAR, and 0.59% and
0.94% in wF1 for the IEMOCAP and MSP-Podcast datasets,
respectively.

Table 3 shows the emotion-wise performance (in Recall
%) comparison, indicating the notable improvements in the
proposed RPC model’s correct prediction of all emotions,
particularly in Happiness and Anger. For IEMOCAP, there
is a performance increase in Happiness by 2.36%, 1.90%,
and 6.08% for ST, Soft-L, and IA-MT, respectively, while
Anger shows improvements of 18.7%, 5.46%, and 1.58% for
the same models. We have observed a similar pattern in
the model performances across the MSP-Podcast corpus.
Here, we can also observe that the ST model outperforms
the RPC model for the Neu emotion, with recall scores of
71.07% and 64.22%, respectively. Similar trends are observed
in other models (Soft-L and IA-MT) that integrate rater or
label subjectivity. This performance variation highlights the
nuanced influence of the modeling approach on specific
emotional categories. It can be inferred that the ST model
achieves higher recall for Neu by potentially generalizing
well, benefiting from a straightforward definition of neutral
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TABLE 4: Predicted emotion analysis (in %) for MajP/MinP
v/s. MV in both corpus over 4 major emotions for proposed
RPC SER model.

IEMOCAP MSP-Podcast
MajP MinP MV MajP MinP MV

Neu 42.22 10.67 52.89 47.45 12.92 60.37
Hap 49.15 18.31 67.46 50.23 14.09 64.22
Ang 54.32 16.54 70.36 51.67 20.85 72.52
Sad 35.12 16.39 51.51 36.32 13.09 49.41

emotions. Conversely, the RPC model, with its consideration
of subjectivity, exhibits a nuanced understanding but tends
towards a more conservative prediction, impacting recall
negatively.

7.2 MajP/MinP Perception Analyses
As demonstrated in the preceding Section 7.1, RPC outper-
formed the non-RPC baselines. To delve deeper into this con-
cept, the subsequent analysis in this section compares the
contributions of MajP and MinP across various emotions.

7.2.1 MajP/MinP v/s. MV
To obtain a comprehensive understanding of the contribu-
tion of rater PCC clusters (MajP and MinP) to the proposed
method, we conduct an analysis of the prediction common-
alities between MajP and MinP using MV (all from RPC).
Only samples that are correctly predicted are considered for
this analysis. Table 4 presents the distribution of correctly
predicted samples by the RPC model across the corpora (in
%). The analysis reveals that both MajP and MinP contribute
to the MV predictions, with MinP exhibiting particular
usefulness. In the case of Happiness, Anger, and Sadness emo-
tions, MinP demonstrated commonalities of 18.31%, 16.54%,
and 16.39% in IEMOCAP, respectively. Moreover, the anal-
ysis in Table 4 highlights that there are more commonalities
observed for Happiness with 67.46% and Anger with 70.36%,
while significant improvement is seen in Sadness as well
with 51.51% for IEMOCAP corpus. These findings align
with the recall scores for Anger with 67.04% and Happiness
with 65.31% presented in Table 3 for the respective corpora.
Similar patterns of performance trends are also observable
in the MSP-Podcast corpus. These observations suggest
that learning the emotional subjectivity of raters through
the PCC approach, which favors the MV and specifically
incorporates the perceptions of minority raters (MinP), con-
tributes significantly to the learning process. Overall, the
analysis shows that Anger and Happiness exhibit greater
contributions, potentially attributed to the consideration of
fine-grained distinguishable emotions such as Excitement
and Frustration. Notably, Frustration is present in the Anger
profile in Fig. 3.

7.2.2 MajP/MinP v/s. ST
In the previous section, we analyzed the contributions of
MajP/MinP in the RPC model alongside MV. Now, we
proceed with an analysis to explore the prediction com-
monalities between MajP/MinP of the RPC model and the
single-task ST model. This examination aims to understand
how much MajP/MinP contributes to the performance of
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(d) MSP-P(w/ improved)

Fig. 10: Comparative analysis of predicted emotions for
MajP/MinP v/s. ST is performed on both the IEMOCAP
and MSP-Podcast datasets, considering the cases with and
without enhanced predictions.

RPC compared to the ST case. To analyse this we focus
on two sets of samples: “w/o improved” samples, which
have similar correct predictions in both models, and “w/
improved” samples, which have correct predictions in the
proposed RPC model but not in the ST model. The results,
illustrated in Fig. 10, depict the prediction commonalities
of MajP and MinP for major emotions in relation to the
ST model predictions. Overall, each emotion category re-
ceives contributions from both MajP and MinP. However,
the Anger and Sadness emotions exhibit the least difference
in MajP-MinP contributions. Specifically, over the “w/o
improved” samples, the MajP-MinP difference is 8.92% and
12.73% for IEMOCAP, and 26.47% and 20.75% for MSP-
Podcast. For the “w/ improved” samples, the MajP-MinP
difference is 16.75% and 11.89% for IEMOCAP, and 20.65%
and 22.16% for MSP-Podcast. These results indicate that
the contributions of MajP and MinP are higher in the “w/
improved” samples compared to the “w/o improved” case.
Based on these experimental findings, It can be inferred that
incorporating rater emotional subjectivity is a significant
factor in improving SER. In addition, we argue that it
is essential to consider both label ambiguity and raters’
ambiguity jointly in learning because ambiguity in the an-
notation processes is inherently conditioned on individual
rater ambiguity and emotion definitions.

7.3 Existing Literature Comparison

In earlier sections, we showcased the efficacy of RPC. Now,
our attention shifts to a comparison with established meth-
ods outlined in Fig. 1 of Section 2. We emphasize that our
method strategically positions itself between the extremes
of label and rater ambiguity, contrasting with approaches
solely focusing on one aspect. This comparison aims to
underscore the superior performance of RPC, attributed to
its controlled integration of rater subjectivity. In this section,
we conduct two types of analyses. Firstly, we compare the
performance on emotion-specific levels. Secondly, consid-
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TABLE 5: Analysis of correct prediction accuracy (correctly
predicted positive samples over the total true positive sam-
ples in %) for proposed model RPC and the considered mod-
els (Soft-L and IA-MT) on the scale of Ambiguity depicted in
Figure 1 for both corpora.

IEMOCAP MSP-Podcast
RPC ↔ Soft-L RPC ↔ IA-MT RPC ↔ Soft-L

Neu
61.47 58.29 61.47 58.08 59.33 56.9

↑↑ 3.18 ↑↑ 3.39 ↑↑ 2.43

Hap
68.39 64.03 62.39 68.01 60.32 56.48

↑↑ 4.36 ↑↑ 5.62 ↑↑ 3.84

Ang
62.04 56.14 68.04 64.02 61.22 57.51

↑↑ 5.90 ↑↑ 4.02 ↑↑ 3.71

Sad
58.68 57.56 58.68 56.85 54.72 52.79

↑↑ 1.12 ↑↑ 1.83 ↑↑ 1.93

ering the controlled subjectivity aspect, we delve into the
analysis of rater subjectivity.

7.3.1 Prediction Accuracy Analysis
To conduct this analysis, we analyze the correct prediction
accuracy of RPC with two existing methods: Soft-L and
IA-MT (Individual-rater Multi-Task). In this analysis, we
evaluate the correct prediction accuracy by calculating the
percentage of correctly predicted positive samples out of the
total true positive samples. Table 5 provides the percentage
increment in correct predictions achieved by our proposed
RPC model compared to the extreme models (Soft-L and IA-
MT) on the Ambiguity scale depicted in Fig. 1, considering
both corpora. The results in Table 5 clearly demonstrate a
significant improvement in prediction accuracy with our
proposed RPC model compared to Soft-L, especially for the
Happiness and Anger samples, with increments of 4.36%
and 5.90% for IEMOCAP, and 3.84% and 3.71% for MSP-
Podcast. Furthermore, when compared to the IA-MT model,
our proposed RPC model also exhibits better prediction
rates, achieving increments of 5.62% and 4.02%. These
findings highlight the superiority of our proposed RPC
model. Additionally, we observe the least improvement in
the prediction accuracy for Sadness as compared to other
emotions. For instance, in the case of IEMOCAP, there is
an improvement of 1.12% and 1.83% for Soft-L and IA-MT,
respectively. Similarly, in the case of MSP-Podcast, there is a
1.93% improvement in Soft-L. These findings are in line with
the results presented in Section 7.2, which also highlight the
impact of controlled rater ambiguity in training data on the
prediction accuracy for Sadness.

7.3.2 Rater Subjectivity Analysis
The aforementioned observations highlight that integrating
rater subjectivity into the learning process, as done in a
controlled manner with RPC, enhances the performance of
the MV-based SER system. To gauge the effectiveness of
our RPC method in handling significant subjectivity, we
introduce this analysis focusing on rater subjectivity across
different methods. Here, subjectivity is characterized by
lower agreement with other raters. To quantify this, we
compute mean pairwise Cohen’s kappa values (Ck value)
for each annotator with others and derive the subjectivity
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Fig. 11: Depicts the integration of rater subjectivity in IEMO-
CAP and MSP-Podcast corpora through RPC clusters (MajP,
MinP), MV, and individual annotation (IA) scenarios.

score as shown in Equation 6. For this analysis, we only
choose methods that consider rater subjectivity in learning
(only IA-MT) and compare with our RPC clusters. Fig. 11
shows methods on the scale of estimated subjectivity scores,
providing insights into the level of subjectivity integration
within each method. We have also presented the fixed
subjectivity scores for corpora as illustrated in Fig. 11. These
scores are estimated using the inter-rater agreement of the
corpora to demonstrate no subjectivity integration in the
context of MV.

subjectivity score = 1− Ck value (6)

where Ck value is the mean rater agreement using Cohen
kappa values estimated for each rater.

In Fig. 11, it is evident that the consideration of indi-
vidual rater subjectivity (IA for IA-MT) results in a high
standard deviation of subjectivity scores. This signifies in-
creased variability in subjectivity, potentially leading to
complexity in learning. In contrast, our RPC’s clusters, i.e.,
MajP and MinP, exhibit a well-controlled standard deviation
compared to IA. In summary, the MV-based SER model,
which excludes subjectivity, and the IA-MT model, covering
a broad spectrum of subjectivity, represent two extremes.
Our proposed RPC technique strikes a balance by integrat-
ing subjectivity in a controlled manner. Moreover, IA-MT
methods are often challenging to implement or impractical
for corpora with variable rater behavior, whereas RPC offers
a more feasible solution.

7.4 RPC Analyses on Varying Coherence Threshold

To evaluate the impact of different rater selections on the
effectiveness of RPC, we train the model using PCC clusters
defined with various thresholds ranging from MinP to MajP.
These clusters, denoted as PCC1, PCC2, PCC3, and PCC4,
have thresholds of 20%, 40%, 60%, and 80%, respectively.
By sorting the PC values scale, we allocate 20% of PC
bins on the left side for MinP and 80% on the right side
for MajP. To analyze the concept of clustering, we present
the performance of our proposed PCC methodologies (RC
and RC-GT) on the IEMOCAP and MSP-Podcast corpora
in terms of UAR (%) and wF1 (%) in Table 6. The analysis
reveals that the model’s performance is only mediocre at
the extremes, where either majority or minority perceptions
are given more importance. For example, PCC1 shows UAR
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TABLE 6: Performance table with different thresholding on proposed methodology (RPC) on IEMOCAP and MSP-Podcast
corpora in terms of UAR (%) and wF1 (%); PCC1 is with threshold=20% (out of 100% of PC bins 20% left-side will consider
for MinP and 80% of right-side will consider for MajP), PCC2, PCC3 and PCC4 with 40%, 60% and 80% respectively.

IEMOCAP MSP-Podcast
PCC1 PCC2 PCC3 PCC4 PCC1 PCC2 PCC3 PCC4

UAR Wf1 UAR Wf1 UAR Wf1 UAR Wf1 UAR Wf1 UAR Wf1 UAR Wf1 UAR Wf1

IR
C

Only-MajP 61.16 63.07 61.27 63.63 60.34 63.22 59.02 61.25 52.37 53.36 53.71 54.19 52.12 53.05 50.55 51.21
Only-MinP 54.16 56.06 54.24 57.15 53.55 56.40 51.81 55.18 51.43 52.27 51.01 52.89 52.17 53.33 49.33 51.53
MajP+MinP 60.25 63.11 59.16 61.12 62.25 63.06 59.32 60.11 56.34 57.14 53.46 54.32 56.90 57.00 54.93 55.82

RPC 61.21 61.56 62.79 63.57 63.15 64.10 59.15 61.03 56.67 58.33 56.24 57.72 57.17 58.54 55.88 56.35

R
C

-G
T

Only-MajP 62.01 63.88 62.19 63.22 61.56 62.33 60.33 61.32 53.91 54.91 53.24 54.18 52.45 53.95 51.21 52.22
Only-MinP 56.01 58.02 56.34 58.28 55.23 57.12 53.95 54.66 52.59 54.00 52.58 55.62 52.83 54.03 51.45 52.43
MajP+MinP 62.50 64.14 62.74 63.99 62.23 63.59 60.12 61.93 56.68 67.45 53.34 55.17 56.98 57.81 54.21 56.01

RPC 62.87 64.23 63.98 65.06 63.19 66.76 61.57 63.09 56.23 57.96 57.19 58.90 58.13 60.11 55.80 57.29

TABLE 7: Cluster consistency analysis for MajP-MinP and
also with MV with a varying sliding threshold over MinP to
MajP; MA and MI refers to MajP and MinP, respectively.

IEMOCAP MSP-Podcast
MV-MA MV-MI MA-MI MV-MA MV-MA MA-MI

IR
C

PCC1 0.27 ↑↑ 0.05 ↓↓ 0.31 ↓↓ 0.24 ↑↑ 0.19 ↓↓ 0.27 ↓↓
PCC2 0.18 ↑↑ 0.10 ↓↓ 0.45 ↑↑ 0.25 ↑↑ 0.11 ↓↓ 0.36 ↑↑
PCC3 0.14 ↓↓ 0.27 ↑↑ 0.42 ↑↑ 0.12 ↓↓ 0.24 ↑↑ 0.47 ↑↑
PCC4 0.12 ↓↓ 0.28 ↑↑ 0.33 ↓↓ 0.06 ↓↓ 0.23 ↑↑ 0.29 ↓↓

R
C

-G
T

PCC1 0.25 ↑↑ 0.06 ↓↓ 0.32 ↓↓ 0.27 ↑↑ 0.16 ↓↓ 0.26 ↓↓
PCC2 0.23 ↑↑ 0.05 ↓↓ 0.56 ↑↑ 0.22 ↑↑ 0.15 ↓↓ 0.38 ↑↑
PCC3 0.13 ↓↓ 0.27 ↑↑ 0.51 ↑↑ 0.11 ↓↓ 0.23 ↑↑ 0.53 ↑↑
PCC4 0.13 ↓↓ 0.26 ↑↑ 0.33 ↓↓ 0.11 ↓↓ 0.25 ↑↑ 0.23 ↓↓

performances of 61.21% and 62.87% for IRC and RC-GT,
respectively, in comparison to PCC2 with 62.79% and 63.98%
of UAR, and PCC3 with 63.15% and 63.19% for IRC and
RC-GT, respectively, for the IEMOCAP corpus. A similar
trend is observed in the MSP-Podcast corpus models. These
results indicate that the proposed method performs better
when there is a balanced selection of MajP and MinP bins,
as opposed to extreme prioritization of either group.

After observing the superior performance of balanced
thresholded PCC in SER from Table 6, we also examine the
consistency of clusters (MajP-MinP) and their correlation
with the majority vote (MV). The coherence analysis with
Cramer’s correlation scores between the PCC labels and the
consensus labels for all PCC combinations is presented in
Table 7. The analysis reveals that as the threshold transi-
tioned from MinP to MajP, the correlations between the
MV labels and the corresponding clusters increased. For
example, PCC1 exhibits stronger MV-MajP correlations for
IEMOCAP (0.27 and 0.25) and MSP-Podcast (0.24 and 0.27)
when utilizing both clustering methods (IRC, RC-GT), in
comparison to MV-MinP, which shows lower correlations
for IEMOCAP (0.05 and 0.06) and MSP-Podcast (0.19 and
0.16). Conversely, PCC2, PCC3, and PCC4 demonstrated
different patterns, as shown in Table 7. Additionally, there
is a higher level of coherence observed between the MinP
and MajP clusters in PCC2 for IEMOCAP (0.45 and 0.56)
and MSP-Podcast (0.36 and 0.38), as well as in PCC3 for
IEMOCAP (0.42 and 0.51) and MSP-Podcast (0.47 and 0.53).
It is worth noting that the RC-GT method has stronger
correlations with the clusters compared to the IRC method.
These findings align with the results of the SER modeling
analysis presented in Table 6.

TABLE 8: Comparison of the RPC method in combination
with other state-of-the-art deep learning techniques. The
Our and Our’ model shows the backbone architecture uti-
lized in this study. Here, models denoted with (’) represent
the RPC models, while those without (’) represent the non-
RPC models.

IEMOCAP MSP-Podcast BIIC-Podcast
UAR wF1 UAR wF1 UAR wF1

Our 60.53 63.01 55.92 57.01 56.33 57.01
BiGRU [52] 62.02 64.15 56.38 57.56 58.33 60.34
BiLSTM [53] 62.33 63.10 57.40 59.25 59.44 61.02
CNN-BLSTM [33] 61.38 64.21 57.28 59.33 58.21 58.34
ConvLSTM [54] 62.02 65.73 56.90 58.41 59.38 60.05

Our’ 63.92 ** 65.98 57.95 ** 60.27 60.11 ** 61.13
BiGRU’ 63.96 * 65.14 57.35 * 59.37 61.04 * 62.82
BiLSTM’ 64.20 ** 66.83 58.68 ** 60.01 61.65 ** 63.07
CNN-BLSTM’ 63.12 ** 66.04 58.21 ** 60.28 60.53 * 61.45
ConvLSTM’ 64.38 * 67.65 59.52 ** 60.45 61.92 ** 62.90

7.5 Synergies with SOTA Deep-Learning Methods

From the preceding sections which utilize a consistent and
a simple backbone structure shown in Section 5.1 for all
scenarios, it is evident that our proposed RPC method
exhibits significant effectiveness compared to existing strate-
gies for handling label and rater ambiguity. We have further
expanded our investigation by incorporating different deep-
learning state-of-the-art (SOTA) techniques to examine how
RPC performs in conjunction with the different backbone of
deep-learning methods. We have now implemented some
of the best-performing deep-learning strategies from the
SER literature [33], [52]–[54] to assess their performance
when combined with our RPC approach. These methods
are evaluated both conventionally (only-MV) and integrated
with our RPC method. The performances of these models
across various corpora are presented in Table 8. The results
from Table 8 clearly demonstrate that RPC versions consis-
tently outperform their non-RPC counterparts. For instance,
BiGRU’ surpasses BiGRU by 1.94% in terms of UAR. Similar
performance gains are observed in other RPC models as
highlighted in Table 8. We also assess the statistical signifi-
cance of these performance differences. We conduct paired
t-tests with each RPC and non-RPC model performance
differences, the results of this statistical test are annotated
in Table 8 using asterisks (* for p < 0.1, ** for p < 0.05).
These statistical test results shown in Table 8 affirm that the
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observed performance differences are indeed significant.
Additionally, since we exclusively evaluated our RPC

on two corpora (IEMOCAP and MSP-Podcast), we aim to
assess its performance on another corpus with potentially
diverse language characteristics. To conduct this analysis,
we incorporate the BIIC-Podcast [55] corpus, which is pub-
licly accessible and collected similarly to the MSP-Podcast
but in the Taiwanese Mandarin language. The performances
are shown in Table 8. We notice a consistent performance
trend for this corpora too, better performance of Our’ with
RPC achieving 60.11% over non-RPC Our model obtaining
56.33% in UAR. This trend is evident with different deep-
learning methods as well considered in Table 8. These re-
sults affirm that the RPC method consistently surpasses the
baselines across all three corpora, underscoring the efficacy
of our proposed RPC approach across diverse corpora.

8 DISCUSSION AND CONCLUSION

This study introduces a novel approach for improving SER
by leveraging raters’ emotional subjectivity through a rater-
expanded label space using the PCC approach and multi-
perception SER learning. The rater coherency is evalu-
ated using two different viewpoints: inter-rater consistency
(IRC) and rater consistency with ground truth (RC-GT).
Our proposed SER approach rater perception coherency-
based (RPC) model, outperforms other methods under the
same setting (raters’ side), achieving a 3.39% and 2.03%
improvement in UAR over the ST (consensus) model for
the IEMOCAP and MSP-Podcast corpora, respectively. This
demonstrates the importance of incorporating raters’ ambi-
guity as an emotional subjectivity and the value of learning
in a rater-expanded label space for better SER.

This approach addresses some of the limitations of pre-
vious approaches, such as the ability to deal with missing la-
bels by centering overall perception labels around majority
raters’ perception (MajP) and minority raters’ perceptions
(MinP), and the reliability to work for large corpora with a
variable number of raters. Additionally, our method enables
learning in a diverse space with a limited branch in multi-
task learning, reducing the complexity and heaviness of the
model and leading to better convergence in SER. In future
work, we will explore how more efficiently this approach
can be extended to larger corpora with a highly variable
number of raters and also, explore other efficient methods to
perceptually cluster the rater according to their perceptual
behavior. Another avenue of exploration is devising strate-
gies to mitigate missing label issues in any branch, poten-
tially incorporating dynamic branch activation to address
such scenarios.
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